Phonology of gender in Korean personal names

Yoonjung Kang & Lisa Sullivan University of Toronto June 5, 2021 Korean Linguistics in Crosslinguistic Context

Overview

Questions: Are there cross-linguistic tendencies of non-arbitrary connection between gender and phonological feature in personal names? How do those tendencies interact with language-specific sound symbolism?

Outline

- 1. Introduction
- 2. Cross-linguistic survey
- 3. Korean dark & light vowels
- 4. Conclusion

Contributors

- Lisa Sullivan Can. Eng, Can. French, Korean
- Andrei Munteanu Russian
- Kristen Wong Cantonese
- Nazia Mohsin Urdu
- Gajathree Ananthathurai Tamil

 Gajathree Ananthathurai, Laurestine Bradford, Araz Derohan, Siobhan Galeazzi, Khadija Jagani – Armenian, Kutchi

Introduction

The arbitrariness of the sign

- The form or sound of a word does not resemble its meaning (Saussure 1916).
- Considered to be one of the major design features of human language (Hockett 1960).

Non-arbitrariness

 Non-arbitrary connections between sound and meaning/word class are more pervasive than generally assumed.

(Kohler 1922; Sapir 1929; Newman 1933;Ultan 1978; Kim-Renaud 1978; Kawahara & Shinohara 2012; Dingemanse et al., 2015; Monaghan, 2014; Svantesson 2016; Fowler 2016; Alderete and Kochetov 2017; Shih et al. 2019)

- **Systematic**: some sound-meaning connections are accidental statistical tendencies particular to specific languages or arise from culture-specific social meanings, with no expectations for cross-linguistic generalizability.
- *Iconic*: other connections may have perceptuo-motoric grounds that make them more amenable to sound-meaning association.

(Monaghan et al,. 2014)

Sound symbolism

Maluma Takete

Sound symbolism

- Maluma-Takete/Bouba-Kiki Experiment (Köhler 1929)
 - ~95-98% said: round shape is "bouba", spiky shape is "kiki" (Ramachandran & Hubbard, 2001)
 - Same results with adults and 2.5 year old children (Maurer, Pathman, & Mondloch, 2006)

Sound symbolism in names

- Sound symbolism has been explored productively in names.
 - Pokemons, baseball players, product names, aliens, superheroes, personal names

English personal names

- Many studies on English names.
- Correlation between sound patterns and gender observed.

Mary vs. John

- Female names:
 - tend to be longer (in terms of syllable number)
 - sonorants more common in beginnings and endings
 - tend to end in an open syllable
 - prefer front vowels
- Male names:
 - More obstruents and stop endings
 - Tend to end in a closed syllable
 - Prefer back vowels

Cassidy, Kelly & Sharoni, 1999; Cutler, McQueen & Robinson, 1990; Pitcher, Mesoudi & McElligott, 2013; Sidhu & Pexman, 2015; Slater & Feinman, 1985; Sutton, 2016; Sullivan 2018; Shih 2019.

Beyond English

- Some of the patterns may have plausible sound symbolic grounds.
- The sound symbolism may not directly signal gender, but relates to concepts stereotypically linked to gender, e.g., size.
- Do other languages exhibit gender-phonology connection in names? How? Are the patterns found in English also attested in other languages?
- Studies outside English names are rare.
 - But, see Starr, et al. 2018 on Cantonese and Mandarin and Shinohara & Kawahara 2013 on Japanese.

Crosslinguistic studies

Languages and data sources

- Languages were selected opportunistically
- Data sources
 - Government registry/survey data
 - Russian (356), Korean (1938), Canadian French (199), Cantonese (288)
 - School yearbook, student list, membership list, names dictionary
 - Armenian (198), Tamil (400), Kutchi (386)
 - Names elicited from native speakers
 - Urdu (200)

Predictions: Vowels

- "The Frequency Code" (Ohala 1983, 1984, 1994)
 - Sounds with high acoustic frequency (front unrounded vowels, high tone, and acute consonants) are used in words denoting smallness

(Kawahara & Shinohara, 2013; Newman, S. S. 1933; Ohala, J. J. 1983; 1984; 1994; Pitcher, Mesoudi & McElligott, 2013)

 Front vowels, specially high front /i/, often associated with femininity in sound symbolism

(Cutler, McQueen & Robinson, 1990; Miall, 2001; Wu, Klink & Guo, 2013)

Articulatory configuration

• Wider aperture of low vowels is associated with larger size. (Kawahara & Shinohara 2010, Sapir 1929, Jesperson 1922)

Female ~ Front/unrounded, high vowels Male ~ Back/rounded, low vowels

Predictions: Consonants

Acoustic transition

- Obstruents, with abrupt acoustic transition, are associated with angular shape and masculinity while sonorants, with gradual transition, are associated with round shape and femininity. (Shinohara & Kawahara, 2013; Newman, 1933; Sidhu & Pexman, 2015; Shinohara & Kawahara, 2013)
- But, sonorants also signal weight in Pokemons and baseball player names (Shih and Rudin 2019, Shih et al. 2020)

• "The Frequency Code" (Ohala 1994)

• Acute consonants (coronals, palatals) with higher frequency noise and formant transitions signal smallness compared to grave consonants (labials, back velars) with lower frequency noise and formant transitions.

Female ~ Sonorants, acute consonants Male ~ Obstruents, grave consonants

Predictions: Syllable weight

- English names
 - Female names have a higher ratio of open-to-total syllables than male names
 - (Slater & Feinman, 1985; Wright, Hay & Bent, 2005)
 - Closed syllables and heavy syllables will favour male names

Female ~ Open/light syllable Male ~ Closed/heavy syllable

Predictions: word length

- English names
 - Female names are longer in syllables (Cutler, et al. 1990, Slater & Feinman 1985).
- Japanese names
 - *Pokemon* names, length is positively correlated with size, weight, and power (Shih et al. 2020).
 - Personal names, male names are longer in mora count (Mutsukawa 2016).

Female ~ ?

Male ~ ?

Statistics

- Univariate logistic regression for each predictor
 - Dependent variable : gender (<u>F</u>, M)
 - Predictors: phonological features
 - Random effects of syllable/character added for Korean & Cantonese

Results

(with/without gender suffix [-a])

	ENG	FRN	ARM	CAN	KOR	RUS	ТАМ	КИТ	URD
High V	F	ns	F	F	ns	F	F	Μ	ns
Low V	М	ns	М	Μ	ns	F/ns	F/ns	F	ns/M
Front V	F	F	F	ns	F	F	F	ns/F	ns
Back V	Μ	Μ	Μ	ns	Μ	Μ	Μ	ns	ns
Son. C	F	F	F	F	F	F	ns/F	ns	ns
Heavy Syl	М	М	NA	Μ	Μ	M/ns	NA	NA	Μ
Longer name	F	F	F	NA	NA	F/ns	F	ns/M	F/M

Results

(with/without gender suffix /-a/)

	ENG	FRN	ARM	CAN	KOR	RUS	ТАМ	КИТ	URD
High V	F	ns	F	F	ns	F	F	Μ	ns
Low V	Μ	ns	Μ	Μ	ns	F/ns	F/ns	F	ns/M
Front V	F	F	F	ns	F	F	F	ns/F	ns
Back V	Μ	Μ	Μ	ns	Μ	Μ	Μ	ns	ns
Son. C	F	F	F	F	F	F	ns/F	ns	ns
Heavy Syl	Μ	Μ	NA	Μ	Μ	M/ns	NA	NA	Μ
Longer Word	F	F	F	NA	NA	F/ns	F	ns/M	F/M

• Vowel height effects are generally consistent with expected tendencies – high vowels prefer Female more than low vowels, except in Kutchi.

• Note the lack of effect in Korean.

Korean dark and light vowels

Korean names

- The most popular baby names in Korea between 2008 and October 27, 2020 as listed at koreanname.me (Kimkkikki, 2020).
- The site draws its data from the national family e-registry.
- Names ranked in the top 1,000 for each gender were extracted from the database.
- Two syllable names are analyzed: n=1,938

Korea names

- About 30% of the name are used for both genders. (e.g., 지우 most popular unisex name)
- 98% of the names are renderable in Sino Korean characters – although not all are likely Sino Korean.
 - Non-Sino Korean names are more common in Female (3.5%) than male names (1.0%).

Sound symbolism in Korean vowels

- Korean sound symbolic words distinguish dark and light vowels, which show vowel harmony.
 - Light vowels are associated with smallness and low intensity.
 - Dark vowels are associated with largeness and high intensity

toltol vs. tultul k^hoŋtak vs. k^huntʌk

• Conflicts with the height symbolism.

Korean Vowels (Kim-Renaud 1978)

• Light = female, Neutral = either, Dark = male

• **High** = female, Mid = either, **Low** = male

	Fr	ont	Back		
high	i	У	ŧ	u	
mid	е	Ø	٨	Ο	
low	3		а		

Korean Vowels: reorganized

• Light = female, Dark = male, Neutral = either

• High = female, Mid = either, Low = male

	Front	Back			
high	i ← (y < wi)	ŧ	u		
mid	e ← (ø < we)	٨	Ο		
low	(ε e)	а			

Korean Vowels: reorganized

• Light = female, Dark = male, Neutral = either

	Front	Back			
high	i	ŧ	u		
mid	E	٨	О		
low		а			

• **High** = female, Mid = either, **Low** = male

	Front	Ba	nck
high	i	ŧ	u
mid	E	٨	О
low		а	

Vowel distribution in names

- Native sound symbolism
 - Harmonic dark and light vowels follow the native sound symbolic patterns: Dark – male, Light – female.
- Cross-linguistic sound symbolism
 - Among harmonic vowels, rounded vowels (lower F2 frequency) prefer male names more than unrounded vowels (higher F2 frequency).
 - Neutral vowels, high or front, favor female names.
- Cumulative effects

Maximum Entropy Harmonic Grammar (MaxEnt)

- A stochastic model of OT grammar where constraints are assigned weights, not strict ranking, to capture probabilistic linguistic patterns.
- Constraints contribute to candidate evaluation cumulatively: the weights of the constraints are added up to calculate the probability of candidates.

	Α	В	С	$\mathcal{H} ext{-score}$	eHarmony	Ζ	predicted
	w=3	w=2	v = 1				
Candidate 1	1			1×3=3	$e^{-3} = 0.0498$	0.0565	88%
Candidate 2		2	1	$2 \times 2 + 1 \times 1 = 5$	$e^{-5} = 0.0067$	0.0565	12%

Constraints

- Default preference
 - *M : don't be a male
 - *F : don't be a female
- Korean sound symbolic
 - *Dark F : a dark vowel must not be in a female name
 - *Light M : a light vowel must not be in a male name
- Crosslinguistic sound symbolic
 - *Front M: a front vowel (= higher F2) must not be in a male name
 - *Round F: a round vowel (= lower F2) must not be in a female name
 - *High M: a high vowel (= smaller aperture) must not be in a male name
 - *Low F: a low vowel (= larger aperture) must not be in a female name

OT grammar

		weight	0	0.8975092	0.34508454	0.3034386	0.85028	0.82841737	0.34156466	0.70965943
			Front-F	Round-M	High-F	Low-M	*M	*F	Dark-M	Light-F
		observed	C1	C2	C3	C4	C5	C6	C7	C8
а	М	204.00	0	0	0	0	1	0	0	1
	F	313.00	0	0	0	1	0	1	0	0
E	М	181.00	1	0	0	0	1	0	0	0
	F	185.00	0	0	0	0	0	1	0	0
٨	Μ	201.00	0	0	0	0	1	0	0	0
	F	146.00	0	0	0	0	0	1	1	0
i	Μ	322.00	1	0	1	0	1	0	0	0
	F	448.00	0	0	0	0	0	1	0	0
i	Μ	75.00	0	0	1	0	1	0	0	0
	F	125.00	0	0	0	0	0	1	0	0
0	Μ	170.00	0	0	0	0	1	0	0	1
	F	144.00	0	1	0	0	0	1	0	0
u	Μ	299.00	0	0	1	0	1	0	0	0
	F	125.00	0	1	0	0	0	1	1	0

MaxEnt constraint weights

- Constraint weights are calculated based on the observed data to maximize the match between the observed probability and the predicted probability.
- Different models of grammar can be tested for their goodness of fit and compared for relative goodness.

		weight		0 0.8975092	0.34508454	0.3034386	0.85028	0.82841737	0.34156466	0.70965943	3					
			Front-F	Round-M	High-F	Low-M	*M	*F	Dark-M	Light-F						
		observed	C1	C2	C3	C4	C5	C6	C7	C8	harmony	eharmony	z	р	ln(p)	loglike
3	м	204.00		0 0	0 0	0	1	0	0	1	1.5599402	0.21014864	0.53258291	0.39458389	-0.9299235	-1966.577
	F	313.00		0 0	0 0	1	0	1	0	C	1.13185597	0.32243427	0.53258291	0.60541611	-0.5018393	
	м	181.00		1 (0 0	0	1	0	0	C	0.85028077	0.42729495	0.86403488	0.49453437	-0.7041386	
	F	185.00		0 0	0 0	0	0	1	0	C	0.82841737	0.43673994	0.86403488	0.50546563	-0.6822752	
۱.	м	201.00		0 0	0 0	0	1	0	0	C	0.85028077	0.42729495	0.73766746	0.57925145	-0.5460186	
	F	146.00		0 0	0 0	0	0	1	1	C	1.16998203	0.31037252	0.73766746	0.42074855	-0.8657199	
	м	322.00		1 () 1	0	1	0	0	C	1.1953653	0.3025934	0.73933333	0.40927871	-0.8933589	
	F	448.00		0 0	0 0	0	0	1	0	C	0.82841737	0.43673994	0.73933333	0.59072129	-0.526411	
	м	75.00		0 0) 1	0	1	0	0	C	1.1953653	0.3025934	0.73933333	0.40927871	-0.8933589	
	F	125.00		0 0	0 0	0	0	1	0	C	0.82841737	0.43673994	0.73933333	0.59072129	-0.526411	
5	м	170.00		0 (0 0	0	1	0	0	1	1.5599402	0.21014864	0.38815668	0.54140158	-0.613594	
	F	144.00		0 1	L O	0	0	1	0	C	1.72592657	0.17800804	0.38815668	0.45859842	-0.7795804	
	Μ	299.00		0 0) 1	0	1	0	0	C	1.1953653	0.3025934	0.42909615	0.70518787	-0.349291	
	F	125.00		0 1	L O	0	0	1	1	C	2.06749123	0.12650275	0.42909615	0.29481213	-1.221417	

MaxEnt models

Model comparisons

constraint	weight	constraint	weight	constraint	weight
*M	0.85	*M	0.88	*M	0.85
*F	0.83	*F	0.80	*F	0.83
*High-M	0.35	*High-M	0.27	*Light-M	0.71
*Low-F	0.3	*Low-F	0	*Dark-F	0.34
*Front-M	0	*Front-M	0		
*Round-F	0.9	*Round-F	0		
*Light-M	0.71				
*Dark-F	0.34				

LogLikelihood= -1967 LogLikelihood= -2056 LogLikelihood = -2031

Conclusion

Summary

- Some sound ~ gender connections are consistently found across languages and reliably extended in nonce word judgment tasks.
 - Vowel backness, height
 - Consonant sonorancy
 - Syllable weight
- Language-specific "systematic" sound symbolic patterns may partially override certain "iconic" tendencies.
 - Korean dark-light vowels vs. vowel height
- Sound symbolism as part of productive phonological grammar, that interacts with language-specific phonological systems.
- The cumulative and probabilistic patterning can be modeled with the same grammatical tools that model core phonological phenomena.

Thanks to...

- Audience at MOT 2019, ICPhS 2019, Stony Brook and USC.
- Nathan Sanders, Avery Ozburn
- Funding:
 - SSHRC Doctoral Fellowship to Lisa Sullivan
 - University of Toronto Excellence Award to K. Wong
 - Jackman Humanities Institutes Scholars in Residence Program
 - University of Toronto Scarborough Research Competitiveness Fund