This report is automatically generated with the R package knitr (version 1.28) .

###########################################################
###########################################################
############ PHONEMIC ANALYSIS OF KOREAN NAMES ############
###########################################################
###################### LISA SULLIVAN ######################
###################### July 13, 2020 ######################
###########################################################
###########################################################

######################################################
############ READ FILES FOR ANALYSIS #################
######################################################

read.delim("phonological_full_coded_2020_05_07.txt",header=T,as.is = T, comment.char = "#" )->dat_phonological_full
read.delim("phonological_s1_coded_2020_05_07.txt",header=T,as.is = T, comment.char = "#" )->dat_phonological_s1
read.delim("phonological_s2_coded_2020_05_07.txt",header=T,as.is = T, comment.char = "#" )->dat_phonological_s2


############################################
############ CART ANALYSIS #################
############################################

######## Factor Everything ##########
dat_phonological_full$open_syll_cnt=factor(dat_phonological_full$open_syll_cnt)
dat_phonological_full$initial_snd_type=factor(dat_phonological_full$initial_snd_type)
dat_phonological_full$final_snd_type=factor(dat_phonological_full$final_snd_type)
dat_phonological_full$syll_1_type=factor(dat_phonological_full$syll_1_type)
dat_phonological_full$dark_v_cnt=factor(dat_phonological_full$dark_v_cnt)
dat_phonological_full$light_v_cnt=factor(dat_phonological_full$light_v_cnt)
dat_phonological_full$front_v_cnt=factor(dat_phonological_full$front_v_cnt)
dat_phonological_full$back_v_cnt=factor(dat_phonological_full$back_v_cnt)
dat_phonological_full$high_v_cnt=factor(dat_phonological_full$high_v_cnt)
dat_phonological_full$low_v_cnt=factor(dat_phonological_full$low_v_cnt)
dat_phonological_full$round_v_cnt=factor(dat_phonological_full$round_v_cnt)
dat_phonological_full$diphthongs=factor(dat_phonological_full$diphthongs)
dat_phonological_full$w_cnt=factor(dat_phonological_full$w_cnt)
dat_phonological_full$j_cnt=factor(dat_phonological_full$j_cnt)
dat_phonological_full$stops=factor(dat_phonological_full$stops)
dat_phonological_full$sonorants=factor(dat_phonological_full$sonorants)
dat_phonological_full$aspirated=factor(dat_phonological_full$aspirated)
dat_phonological_full$tense=factor(dat_phonological_full$tense)
dat_phonological_full$plain=factor(dat_phonological_full$plain)
dat_phonological_full$Sex=factor(dat_phonological_full$Sex)

dat_phonological_s1$initial_snd_type=factor(dat_phonological_s1$initial_snd_type)
dat_phonological_s1$syll_1_type=factor(dat_phonological_s1$syll_1_type)
dat_phonological_s1$dark_v_cnt=factor(dat_phonological_s1$dark_v_cnt)
dat_phonological_s1$light_v_cnt=factor(dat_phonological_s1$light_v_cnt)
dat_phonological_s1$front_v_cnt=factor(dat_phonological_s1$front_v_cnt)
dat_phonological_s1$back_v_cnt=factor(dat_phonological_s1$back_v_cnt)
dat_phonological_s1$high_v_cnt=factor(dat_phonological_s1$high_v_cnt)
dat_phonological_s1$low_v_cnt=factor(dat_phonological_s1$low_v_cnt)
dat_phonological_s1$round_v_cnt=factor(dat_phonological_s1$round_v_cnt)
dat_phonological_s1$diphthongs=factor(dat_phonological_s1$diphthongs)
dat_phonological_s1$w_cnt=factor(dat_phonological_s1$w_cnt)
dat_phonological_s1$j_cnt=factor(dat_phonological_s1$j_cnt)
dat_phonological_s1$stops=factor(dat_phonological_s1$stops)
dat_phonological_s1$sonorants=factor(dat_phonological_s1$sonorants)
dat_phonological_s1$aspirated=factor(dat_phonological_s1$aspirated)
dat_phonological_s1$tense=factor(dat_phonological_s1$tense)
dat_phonological_s1$plain=factor(dat_phonological_s1$plain)
dat_phonological_s1$Sex=factor(dat_phonological_s1$Sex)
dat_phonological_s1$height=factor(dat_phonological_s1$height)
dat_phonological_s1$backness=factor(dat_phonological_s1$backness)
dat_phonological_s1$dark_bright=factor(dat_phonological_s1$dark_bright)
dat_phonological_s1$vowel_length=factor(dat_phonological_s1$vowel_length)

dat_phonological_s2$initial_snd_type=factor(dat_phonological_s2$initial_snd_type)
dat_phonological_s2$syll_2_type=factor(dat_phonological_s2$syll_2_type)
dat_phonological_s2$dark_v_cnt=factor(dat_phonological_s2$dark_v_cnt)
dat_phonological_s2$light_v_cnt=factor(dat_phonological_s2$light_v_cnt)
dat_phonological_s2$front_v_cnt=factor(dat_phonological_s2$front_v_cnt)
dat_phonological_s2$back_v_cnt=factor(dat_phonological_s2$back_v_cnt)
dat_phonological_s2$high_v_cnt=factor(dat_phonological_s2$high_v_cnt)
dat_phonological_s2$low_v_cnt=factor(dat_phonological_s2$low_v_cnt)
dat_phonological_s2$round_v_cnt=factor(dat_phonological_s2$round_v_cnt)
dat_phonological_s2$diphthongs=factor(dat_phonological_s2$diphthongs)
dat_phonological_s2$w_cnt=factor(dat_phonological_s2$w_cnt)
dat_phonological_s2$j_cnt=factor(dat_phonological_s2$j_cnt)
dat_phonological_s2$stops=factor(dat_phonological_s2$stops)
dat_phonological_s2$sonorants=factor(dat_phonological_s2$sonorants)
dat_phonological_s2$aspirated=factor(dat_phonological_s2$aspirated)
dat_phonological_s2$tense=factor(dat_phonological_s2$tense)
dat_phonological_s2$plain=factor(dat_phonological_s2$plain)
dat_phonological_s2$Sex=factor(dat_phonological_s2$Sex)
dat_phonological_s2$height=factor(dat_phonological_s2$height)
dat_phonological_s2$backness=factor(dat_phonological_s2$backness)
dat_phonological_s2$dark_bright=factor(dat_phonological_s2$dark_bright)
dat_phonological_s2$vowel_length=factor(dat_phonological_s2$vowel_length)


######## Full Names ########
### Construct & plot the full tree
demtree_2s = rpart(Sex~open_syll_cnt+dark_v_cnt+light_v_cnt+front_v_cnt+back_v_cnt+high_v_cnt+low_v_cnt+round_v_cnt+diphthongs+w_cnt+j_cnt+stops+sonorants+aspirated+tense+plain, data = dat_phonological_full)
plot(demtree_2s, compress= T, branch = 1, margin = 0.1)
text(demtree_2s, use.n=T,pretty=0)
plot of chunk auto-report
### Run 10-part cross-validation to prune the full tree
plotcp(demtree_2s)
plot of chunk auto-report
### Prune the tree and replot the data
demtree_2s = prune(demtree_2s, cp = 0.015)
plot(demtree_2s, compress = T, branch = 1, margin = 0.1)
text(demtree_2s, use.n=T,pretty=0)
plot of chunk auto-report
### Get an estimate of the predictive power of the tree based on the current data
predict(demtree_2s, type = "class") -> predValues_2s #Predicted Values
preds_2s = data.frame(obs=dat_phonological_full$Sex, pred=predValues_2s) #Observed vs Predicted
xtabs(~obs+pred, preds_2s) #Cross-tabs of observed vs predicted
##    pred
## obs   F   M
##   F 608 366
##   M 307 663
(780+485)/nrow(dat_phonological_full)# Proportion correct
## [1] 0.6507202
######## Syllable 1 ########
demtree_s1 = rpart(Sex~syll_1_type+initial_snd_type+dark_bright+backness+height+round_v_cnt+vowel_length+stops+sonorants+aspirated+tense+plain, data = dat_phonological_s1)
plot(demtree_s1, compress= T, branch = 1, margin = 0.1)
text(demtree_s1, use.n=T,pretty=0)
plot of chunk auto-report
### Run 10-part cross-validation to prune the full tree
plotcp(demtree_s1)
plot of chunk auto-report
### Prune the tree and replot the data
demtree_s1 = prune(demtree_s1, cp = 0.016)
plot(demtree_s1, compress = T, branch = 1, margin = 0.1)
text(demtree_s1, use.n=T,pretty=0)
plot of chunk auto-report
### Get an estimate of the predictive power of the tree based on the current data
predict(demtree_s1, type = "class") -> predValues_s1 #Predicted Values
preds_s1 = data.frame(obs=dat_phonological_s1$Sex, pred=predValues_s1) #Observed vs Predicted
xtabs(~obs+pred, preds_s1) #Cross-tabs of observed vs predicted
##    pred
## obs   F   M
##   F 622 352
##   M 365 605
(672+542)/nrow(dat_phonological_s1)# Proportion correct
## [1] 0.6244856
######## Syllable 2 ########
demtree_s2 = rpart(Sex~syll_2_type+initial_snd_type+dark_bright+backness+height+round_v_cnt+vowel_length+stops+sonorants+aspirated+tense+plain, data = dat_phonological_s2)
plot(demtree_s2, compress= T, branch = 1, margin = 0.1)
text(demtree_s2, use.n=T,pretty=0)
plot of chunk auto-report
### Run 10-part cross-validation to prune the full tree
plotcp(demtree_s2)
plot of chunk auto-report
### Prune the tree and replot the data
demtree_s2 = prune(demtree_s2, cp = 0.02)
plot(demtree_s2, compress = T, branch = 1, margin = 0.1)
text(demtree_s2, use.n=T,pretty=0)
plot of chunk auto-report
### Get an estimate of the predictive power of the tree based on the current data
predict(demtree_s2, type = "class") -> predValues_s2 #Predicted Values
preds_s2 = data.frame(obs=dat_phonological_s2$Sex, pred=predValues_s2) #Observed vs Predicted
xtabs(~obs+pred, preds_s2) #Cross-tabs of observed vs predicted
##    pred
## obs   F   M
##   F 604 370
##   M 244 726
(604+725)/nrow(dat_phonological_s2)# Proportion correct
## [1] 0.683642
#######################################################
################# UNIVARITE ANALYSIS ##################
#######################################################

############ Center Variables #############
contrasts(dat_phonological_full$open_syll_cnt)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_full$initial_snd_type)=contrasts(dat_phonological_full$initial_snd_type)-1/2
contrasts(dat_phonological_full$final_snd_type)=contrasts(dat_phonological_full$final_snd_type)-1/2
contrasts(dat_phonological_full$syll_1_type)=contrasts(dat_phonological_full$syll_1_type)-1/2
contrasts(dat_phonological_full$dark_v_cnt)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_full$light_v_cnt)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_full$front_v_cnt)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_full$back_v_cnt)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_full$high_v_cnt)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_full$low_v_cnt)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_full$round_v_cnt)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_full$diphthongs)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_full$w_cnt)=contrasts(dat_phonological_full$w_cnt)-1/2
contrasts(dat_phonological_full$j_cnt)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_full$stops)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_full$sonorants)=cbind(zero=c(3/4,-1/4,-1/4,-1/4), one=c(0,2/3,-1/3,-1/3), two_three=c(0,0,1/2,-1/2))
contrasts(dat_phonological_full$aspirated)=contrasts(dat_phonological_full$aspirated)-1/2
contrasts(dat_phonological_full$tense)=contrasts(dat_phonological_full$tense)-1/2
contrasts(dat_phonological_full$plain)=cbind(zero=c(3/4,-1/4,-1/4,-1/4), one=c(0,2/3,-1/3,-1/3), two_three=c(0,0,1/2,-1/2))

contrasts(dat_phonological_s1$initial_snd_type)=contrasts(dat_phonological_s1$initial_snd_type)-1/2
contrasts(dat_phonological_s1$syll_1_type)=contrasts(dat_phonological_s1$syll_1_type)-1/2
contrasts(dat_phonological_s1$dark_v_cnt)=contrasts(dat_phonological_s1$dark_v_cnt)-1/2
contrasts(dat_phonological_s1$light_v_cnt)=contrasts(dat_phonological_s1$light_v_cnt)-1/2
contrasts(dat_phonological_s1$front_v_cnt)=contrasts(dat_phonological_s1$light_v_cnt)-1/2
contrasts(dat_phonological_s1$back_v_cnt)=contrasts(dat_phonological_s1$light_v_cnt)-1/2
contrasts(dat_phonological_s1$high_v_cnt)=contrasts(dat_phonological_s1$light_v_cnt)-1/2
contrasts(dat_phonological_s1$low_v_cnt)=contrasts(dat_phonological_s1$light_v_cnt)-1/2
contrasts(dat_phonological_s1$round_v_cnt)=contrasts(dat_phonological_s1$light_v_cnt)-1/2
contrasts(dat_phonological_s1$diphthongs)=contrasts(dat_phonological_s1$light_v_cnt)-1/2
contrasts(dat_phonological_s1$w_cnt)=contrasts(dat_phonological_s1$light_v_cnt)-1/2
contrasts(dat_phonological_s1$j_cnt)=contrasts(dat_phonological_s1$light_v_cnt)-1/2
contrasts(dat_phonological_s1$stops)=contrasts(dat_phonological_s1$stops)-1/2
contrasts(dat_phonological_s1$sonorants)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_s1$aspirated)=contrasts(dat_phonological_s1$aspirated)-1/2
###contrasts(dat_phonological_s1$tense)=contrasts(dat_phonological_s1$tense)-1/2
contrasts(dat_phonological_s1$plain)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_s1$height)=cbind(high=c(2/3,-1/3,-1/3), low_mid=c(0,1/2,-1/2))
contrasts(dat_phonological_s1$backness)=cbind(front=c(-1/3,-1/3,2/3), back_central=c(1/2,-1/2,0))
contrasts(dat_phonological_s1$dark_bright)=cbind(neutral=c(-1/3,-1/3,2/3), bright_dark=c(1/2,-1/2,0))
contrasts(dat_phonological_s1$vowel_length)=cbind(mono_diph=c(-1/3,2/3,-1/3), j_w=c(1/2,0,-1/2))

##### ******** NO TENSE IN SYLL 1

contrasts(dat_phonological_s2$initial_snd_type)=contrasts(dat_phonological_s2$initial_snd_type)-1/2
contrasts(dat_phonological_s2$syll_2_type)=contrasts(dat_phonological_s2$syll_2_type)-1/2
contrasts(dat_phonological_s2$dark_v_cnt)=contrasts(dat_phonological_s2$dark_v_cnt)-1/2
contrasts(dat_phonological_s2$light_v_cnt)=contrasts(dat_phonological_s2$light_v_cnt)-1/2
contrasts(dat_phonological_s2$front_v_cnt)=contrasts(dat_phonological_s2$light_v_cnt)-1/2
contrasts(dat_phonological_s2$back_v_cnt)=contrasts(dat_phonological_s2$light_v_cnt)-1/2
contrasts(dat_phonological_s2$high_v_cnt)=contrasts(dat_phonological_s2$light_v_cnt)-1/2
contrasts(dat_phonological_s2$low_v_cnt)=contrasts(dat_phonological_s2$light_v_cnt)-1/2
contrasts(dat_phonological_s2$round_v_cnt)=contrasts(dat_phonological_s2$light_v_cnt)-1/2
contrasts(dat_phonological_s2$diphthongs)=contrasts(dat_phonological_s2$light_v_cnt)-1/2
contrasts(dat_phonological_s2$w_cnt)=contrasts(dat_phonological_s2$light_v_cnt)-1/2
contrasts(dat_phonological_s2$j_cnt)=contrasts(dat_phonological_s2$light_v_cnt)-1/2
contrasts(dat_phonological_s2$stops)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_s2$sonorants)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_s2$aspirated)=contrasts(dat_phonological_s2$aspirated)-1/2
contrasts(dat_phonological_s2$tense)=contrasts(dat_phonological_s2$tense)-1/2
contrasts(dat_phonological_s2$plain)=cbind(zero=c(2/3,-1/3,-1/3), one_two=c(0,1/2,-1/2))
contrasts(dat_phonological_s2$height)=cbind(high=c(2/3,-1/3,-1/3), low_mid=c(0,1/2,-1/2))
contrasts(dat_phonological_s2$backness)=cbind(front=c(-1/3,-1/3,2/3), back_central=c(1/2,-1/2,0))
contrasts(dat_phonological_s2$dark_bright)=cbind(neutral=c(-1/3,-1/3,2/3), bright_dark=c(1/2,-1/2,0))
contrasts(dat_phonological_s2$vowel_length)=cbind(mono_diph=c(-1/3,2/3,-1/3), j_w=c(1/2,0,-1/2))

######### Full Names ########

# Number of syllables
lm_2s_syll_type = glmer(Sex~open_syll_cnt+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_syll_type)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ open_syll_cnt + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1755.8   1783.7   -872.9   1745.8     1939 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8265 -0.3946 -0.0299  0.3757  3.2022 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 6.504    2.550   
##  syllable_1 (Intercept) 2.637    1.624   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           0.09386    0.31328   0.300    0.764    
## open_syll_cntzero     2.38199    0.48293   4.932 8.12e-07 ***
## open_syll_cntone_two  1.66310    0.36958   4.500 6.80e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) opn_s_
## opn_syll_cn -0.064       
## opn_syll_c_ -0.150  0.810
dat_phonological_full %>% ggplot(aes(open_syll_cnt,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Open Syllables") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Open Syllable Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Dark Vowels
lm_2s_dark_v = glmer(Sex~dark_v_cnt + (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_dark_v)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ dark_v_cnt + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1775.3   1803.1   -882.6   1765.3     1939 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6200 -0.3950 -0.0352  0.3785  2.6749 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 6.927    2.632   
##  syllable_1 (Intercept) 3.220    1.794   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)         0.3962     0.3321   1.193   0.2329  
## dark_v_cntzero     -1.0847     0.5026  -2.158   0.0309 *
## dark_v_cntone_two  -0.6858     0.3731  -1.838   0.0660 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) drk_v_
## drk_v_cntzr -0.219       
## drk_v_cntn_ -0.236  0.861
dat_phonological_full %>% ggplot(aes(dark_v_cnt,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Vowels") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Dark Vowel Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Light Vowels
lm_2s_light_v= glmer(Sex~light_v_cnt + (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_light_v)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ light_v_cnt + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1779.7   1807.6   -884.9   1769.7     1939 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6629 -0.3997 -0.0347  0.3769  2.6094 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.407    2.722   
##  syllable_1 (Intercept) 3.107    1.763   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)         0.268648   0.338389   0.794    0.427
## light_v_cntzero    -0.008313   0.495251  -0.017    0.987
## light_v_cntone_two -0.099583   0.445895  -0.223    0.823
## 
## Correlation of Fixed Effects:
##             (Intr) lght__
## lght_v_cntz -0.228       
## lght_v_cnt_ -0.266  0.811
dat_phonological_full %>% ggplot(aes(light_v_cnt,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Vowels") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Light Vowel Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Front Vowels
lm_2s_front_v = glmer(Sex~front_v_cnt+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_front_v)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ front_v_cnt + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1772.0   1799.8   -881.0   1762.0     1939 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7754 -0.4031 -0.0301  0.3761  2.4809 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 6.672    2.583   
##  syllable_1 (Intercept) 3.261    1.806   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##                    Estimate Std. Error z value Pr(>|z|)   
## (Intercept)         -0.2925     0.3739  -0.782  0.43409   
## front_v_cntzero      1.4522     0.5706   2.545  0.01093 * 
## front_v_cntone_two   1.3494     0.4735   2.850  0.00438 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) frnt__
## frnt_v_cntz -0.500       
## frnt_v_cnt_ -0.498  0.858
dat_phonological_full %>% ggplot(aes(front_v_cnt,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Vowels") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Front Vowel Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Back Vowels
lm_2s_back_v = glmer(Sex~back_v_cnt+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_back_v)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ back_v_cnt + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1773.3   1801.1   -881.6   1763.3     1939 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5336 -0.3993 -0.0340  0.3702  2.6728 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 6.739    2.596   
##  syllable_1 (Intercept) 3.195    1.787   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)         0.5693     0.3695   1.541   0.1234  
## back_v_cntzero     -1.2824     0.5583  -2.297   0.0216 *
## back_v_cntone_two  -0.6399     0.5195  -1.232   0.2180  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) bck_v_
## bck_v_cntzr -0.472       
## bck_v_cntn_ -0.487  0.836
dat_phonological_full %>% ggplot(aes(back_v_cnt,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Vowels") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Back Vowel Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of High Vowels
lm_2s_high_v = glmer(Sex~high_v_cnt+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_high_v)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ high_v_cnt + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1779.8   1807.6   -884.9   1769.8     1939 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6283 -0.4011 -0.0353  0.3775  2.5993 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.375    2.716   
##  syllable_1 (Intercept) 3.112    1.764   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)        0.24337    0.33959   0.717    0.474
## high_v_cntzero     0.07557    0.50699   0.149    0.882
## high_v_cntone_two  0.01690    0.36671   0.046    0.963
## 
## Correlation of Fixed Effects:
##             (Intr) hgh_v_
## hgh_v_cntzr -0.256       
## hgh_v_cntn_ -0.281  0.856
dat_phonological_full %>% ggplot(aes(high_v_cnt,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Vowels") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("High Vowel Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Low Vowels
lm_2s_low_v = glmer(Sex~low_v_cnt+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_low_v)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ low_v_cnt + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1779.6   1807.5   -884.8   1769.6     1939 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6421 -0.3981 -0.0351  0.3752  2.6226 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.377    2.716   
##  syllable_1 (Intercept) 3.123    1.767   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)        0.1756     0.3927   0.447    0.655
## low_v_cntzero      0.2307     0.5793   0.398    0.691
## low_v_cntone_two   0.1153     0.6026   0.191    0.848
## 
## Correlation of Fixed Effects:
##             (Intr) lw_v_c
## low_v_cntzr -0.540       
## lw_v_cntn_t -0.516  0.802
dat_phonological_full %>% ggplot(aes(low_v_cnt,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Vowels") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Low Vowel Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Round Vowels
lm_2s_round_v = glmer(Sex~round_v_cnt+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_round_v)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ round_v_cnt + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1773.0   1800.9   -881.5   1763.0     1939 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5141 -0.3995 -0.0341  0.3708  2.6729 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 6.707    2.590   
##  syllable_1 (Intercept) 3.196    1.788   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##                    Estimate Std. Error z value Pr(>|z|)  
## (Intercept)          0.5744     0.3666   1.567   0.1171  
## round_v_cntzero     -1.3218     0.5545  -2.384   0.0171 *
## round_v_cntone_two  -0.6904     0.5148  -1.341   0.1799  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) rnd_v_
## rnd_v_cntzr -0.460       
## rnd_v_cntn_ -0.478  0.835
dat_phonological_full %>% ggplot(aes(round_v_cnt,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Vowels") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Round Vowel Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Diphthongs
lm_2s_diphthong = glmer(Sex~diphthongs+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_diphthong)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ diphthongs + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1779.4   1807.3   -884.7   1769.4     1939 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7076 -0.4017 -0.0345  0.3761  2.5881 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.429    2.726   
##  syllable_1 (Intercept) 3.063    1.750   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)        0.18730    0.38175   0.491    0.624
## diphthongszero     0.26148    0.56209   0.465    0.642
## diphthongsone_two  0.05778    0.48659   0.119    0.905
## 
## Correlation of Fixed Effects:
##             (Intr) dphthn
## diphthngszr -0.501       
## dphthngsn_t -0.499  0.835
dat_phonological_full %>% ggplot(aes(diphthongs,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Diphthongs") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Diphthong Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of /w/ Diphthongs
lm_2s_w = glmer(Sex~w_cnt+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_w)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ w_cnt + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1771.9   1794.2   -881.9   1763.9     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6014 -0.3978 -0.0353  0.3686  2.5868 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.341    2.709   
##  syllable_1 (Intercept) 3.010    1.735   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   1.1530     0.5117   2.253   0.0242 *
## w_cnt1        2.1387     0.8972   2.384   0.0171 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr)
## w_cnt1 0.751
dat_phonological_full %>% ggplot(aes(w_cnt,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Diphthongs") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("/w/ Diphthong Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of /j/ Diphthongs
lm_2s_j = glmer(Sex~j_cnt+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_j)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ j_cnt + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1776.7   1804.6   -883.4   1766.7     1939 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7554 -0.3994 -0.0335  0.3747  2.5721 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.472    2.733   
##  syllable_1 (Intercept) 2.959    1.720   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.07062    0.41251  -0.171    0.864
## j_cntzero     0.93861    0.60554   1.550    0.121
## j_cntone_two  0.44428    0.56571   0.785    0.432
## 
## Correlation of Fixed Effects:
##             (Intr) j_cntz
## j_cntzero   -0.597       
## j_cntone_tw -0.587  0.842
dat_phonological_full %>% ggplot(aes(j_cnt,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Diphthongs") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("/j/ Diphthong Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Stops
lm_2s_stops = glmer(Sex~stops+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_stops)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ stops + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1759.7   1787.6   -874.8   1749.7     1939 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4598 -0.3974 -0.0331  0.3618  2.6461 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 6.915    2.630   
##  syllable_1 (Intercept) 2.861    1.692   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    1.0578     0.4030   2.625  0.00867 ** 
## stopszero     -2.4090     0.5969  -4.036 5.44e-05 ***
## stopsone_two  -1.3533     0.6049  -2.237  0.02528 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) stpszr
## stopszero   -0.560       
## stopsone_tw -0.527  0.805
dat_phonological_full %>% ggplot(aes(stops,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Stops") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Stop Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Sonorants
lm_2s_sonorants = glmer(Sex~sonorants+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_sonorants)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ sonorants + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1779.3   1812.7   -883.6   1767.3     1938 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6234 -0.3965 -0.0355  0.3753  2.6478 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.495    2.738   
##  syllable_1 (Intercept) 3.019    1.738   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)          0.2211     0.3473   0.637    0.524
## sonorantszero       -0.7928     0.6009  -1.319    0.187
## sonorantsone        -0.2905     0.4772  -0.609    0.543
## sonorantstwo_three  -0.2218     0.5235  -0.424    0.672
## 
## Correlation of Fixed Effects:
##             (Intr) snrntsz snrntsn
## sonorantszr -0.136                
## sonorantson -0.263  0.855         
## snrntstw_th -0.315  0.622   0.790
dat_phonological_full %>% ggplot(aes(sonorants,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Sonorants") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Sonorant Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Lenis Obstruents
lm_2s_plain = glmer(Sex~plain+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_plain)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ plain + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1767.0   1800.4   -877.5   1755.0     1938 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5057 -0.3949 -0.0362  0.3746  2.7030 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 6.344    2.519   
##  syllable_1 (Intercept) 3.065    1.751   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.9280     0.4788   1.938 0.052613 .  
## plainzero       -2.6796     0.7483  -3.581 0.000342 ***
## plainone        -2.3975     0.8262  -2.902 0.003709 ** 
## plaintwo_three  -2.7056     1.4868  -1.820 0.068808 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) planzr plainn
## plainzero   -0.518              
## plainone    -0.691  0.875       
## plaintw_thr -0.727  0.678  0.905
dat_phonological_full %>% ggplot(aes(plain,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Obstruents") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Lenis Obstruent Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Fortis Obstruents
lm_2s_tense = glmer(Sex~tense+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_tense)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ tense + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1774.6   1796.9   -883.3   1766.6     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6473 -0.3997 -0.0343  0.3751  2.6038 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.288    2.700   
##  syllable_1 (Intercept) 3.175    1.782   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   -8.699     21.116  -0.412     0.68
## tense1       -17.969     42.229  -0.426     0.67
## 
## Correlation of Fixed Effects:
##        (Intr)
## tense1 1.000
dat_phonological_full %>% ggplot(aes(tense,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Obstruents") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Fortis Obstruent Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Aspirated Obstruents
lm_2s_aspirated = glmer(Sex~aspirated+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_aspirated)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ aspirated + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1775.1   1797.3   -883.5   1767.1     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6305 -0.3995 -0.0341  0.3728  2.5979 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.348    2.711   
##  syllable_1 (Intercept) 3.040    1.744   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   0.7217     0.4257   1.695   0.0900 .
## aspirated1    1.1961     0.6995   1.710   0.0873 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr)
## aspirated1 0.648
dat_phonological_full %>% ggplot(aes(aspirated,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Obstruents") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Aspirated Obstruent Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
######### Syllable #1 ##########

# Initial Sound 
lm_s1_initial_snd = glmer(Sex~initial_snd_type + (1|syllable_1) , data=dat_phonological_s1, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s1_initial_snd)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ initial_snd_type + (1 | syllable_1)
##    Data: dat_phonological_s1
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2369.0   2385.7  -1181.5   2363.0     1941 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0116 -0.7856 -0.2091  0.7411  3.1583 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_1 (Intercept) 2.712    1.647   
## Number of obs: 1944, groups:  syllable_1, 119
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)        -0.1608     0.2323  -0.692    0.489
## initial_snd_typeV  -0.1952     0.4637  -0.421    0.674
## 
## Correlation of Fixed Effects:
##             (Intr)
## intl_snd_tV 0.619
dat_phonological_s1 %>% ggplot(aes(initial_snd_type,fill=Sex)) + geom_bar(position="fill") + xlab("Sound Type") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Initial Sound Type") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Syllable Type
lm_s1_initial_syll = glmer(Sex~syll_1_type+(1|syllable_1) , data=dat_phonological_s1, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s1_initial_syll)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ syll_1_type + (1 | syllable_1)
##    Data: dat_phonological_s1
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2354.1   2370.8  -1174.0   2348.1     1941 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0745 -0.7792 -0.2082  0.7314  3.2046 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_1 (Intercept) 2.178    1.476   
## Number of obs: 1944, groups:  syllable_1, 119
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -0.01856    0.16809  -0.110    0.912    
## syll_1_typeOpen -1.35091    0.33807  -3.996 6.44e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## syll_1_typO -0.091
dat_phonological_s1 %>% ggplot(aes(syll_1_type,fill=Sex)) + geom_bar(position="fill") + xlab("Syllable Type") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Syllable Type") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Vowel Height
lm_s1_height = glmer(Sex~height+(1|syllable_1) , data=dat_phonological_s1, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s1_height)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ height + (1 | syllable_1)
##    Data: dat_phonological_s1
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2369.6   2391.9  -1180.8   2361.6     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0269 -0.7818 -0.2105  0.7403  3.1439 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_1 (Intercept) 2.699    1.643   
## Number of obs: 1944, groups:  syllable_1, 119
## 
## Fixed effects:
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept)    -0.1343     0.1850  -0.726    0.468
## heighthigh      0.3245     0.3894   0.833    0.405
## heightlow_mid  -0.4812     0.4554  -1.057    0.291
## 
## Correlation of Fixed Effects:
##             (Intr) hghthg
## heighthigh  -0.023       
## heightlw_md  0.178 -0.127
dat_phonological_s1 %>% ggplot(aes(height,fill=Sex)) + geom_bar(position="fill") + xlab("Vowel Height") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Vowel Height") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Vowel Backness
lm_s1_backness = glmer(Sex~backness+(1|syllable_1) , data=dat_phonological_s1, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s1_backness)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ backness + (1 | syllable_1)
##    Data: dat_phonological_s1
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2371.1   2393.4  -1181.6   2363.1     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0050 -0.7862 -0.2081  0.7409  3.1842 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_1 (Intercept) 2.719    1.649   
## Number of obs: 1944, groups:  syllable_1, 119
## 
## Fixed effects:
##                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)          -0.11043    0.18737  -0.589    0.556
## backnessfront        -0.11543    0.41100  -0.281    0.779
## backnessback_central -0.03756    0.44058  -0.085    0.932
## 
## Correlation of Fixed Effects:
##             (Intr) bcknss
## backnssfrnt  0.102       
## bcknssbck_c  0.185 -0.128
dat_phonological_s1 %>% ggplot(aes(backness,fill=Sex)) + geom_bar(position="fill") + xlab("Vowel Backness") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Vowel Backness") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
#Vowel Type (Dark - Light - Neutral)
lm_s1_darkness = glmer(Sex~dark_bright+(1|syllable_1) , data=dat_phonological_s1, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s1_darkness)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ dark_bright + (1 | syllable_1)
##    Data: dat_phonological_s1
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2369.1   2391.4  -1180.6   2361.1     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8996 -0.7827 -0.2007  0.7378  3.1056 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_1 (Intercept) 2.691    1.64    
## Number of obs: 1944, groups:  syllable_1, 119
## 
## Fixed effects:
##                        Estimate Std. Error z value Pr(>|z|)
## (Intercept)            -0.08165    0.19137  -0.427    0.670
## dark_brightneutral      0.07024    0.45194   0.155    0.876
## dark_brightbright_dark -0.58705    0.40843  -1.437    0.151
## 
## Correlation of Fixed Effects:
##             (Intr) drk_br
## drk_brghtnt  0.310       
## drk_brghtb_ -0.025  0.020
dat_phonological_s1 -> dat_phonological_s1b
dat_phonological_s1b$dark_bright = as.character(dat_phonological_s1b$dark_bright)
dat_phonological_s1b %>% mutate(dark_bright=if_else(dark_bright == "Bright", "Light", dark_bright)) -> dat_phonological_s1b
dat_phonological_s1b$dark_bright = factor(dat_phonological_s1b$dark_bright, levels = c("Light", "Dark", "Neutral"))

dat_phonological_s1b %>% ggplot(aes(dark_bright,fill=Sex)) + geom_bar(position="fill") + xlab("Vowel Type") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Vowel Type") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Vowel Rounding
lm_s1_round_v = glmer(Sex~round_v_cnt+(1|syllable_1) , data=dat_phonological_s1, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s1_round_v)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ round_v_cnt + (1 | syllable_1)
##    Data: dat_phonological_s1
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2369.1   2385.8  -1181.6   2363.1     1941 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0325 -0.7854 -0.2099  0.7420  3.1749 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_1 (Intercept) 2.727    1.651   
## Number of obs: 1944, groups:  syllable_1, 119
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.01361    0.34294   -0.04    0.968
## round_v_cnt1  0.12142    0.40532    0.30    0.765
## 
## Correlation of Fixed Effects:
##             (Intr)
## rond_v_cnt1 0.846
dat_phonological_s1 %>% ggplot(aes(round_v_cnt,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Vowels") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Round Vowel Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Vowel Length & Diphthong Type
lm_s1_diphthong = glmer(Sex~vowel_length+(1|syllable_1) , data=dat_phonological_s1, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s1_diphthong)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ vowel_length + (1 | syllable_1)
##    Data: dat_phonological_s1
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2367.7   2390.0  -1179.9   2359.7     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9526 -0.7853 -0.2091  0.7430  3.1677 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_1 (Intercept) 2.629    1.621   
## Number of obs: 1944, groups:  syllable_1, 119
## 
## Fixed effects:
##                       Estimate Std. Error z value Pr(>|z|)  
## (Intercept)             0.4633     0.3635   1.275   0.2025  
## vowel_lengthmono_diph  -0.9318     0.5754  -1.619   0.1053  
## vowel_lengthj_w        -1.9042     1.0715  -1.777   0.0755 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) vwl_lngthm_
## vwl_lngthm_ -0.845            
## vwl_lngthj_ -0.727  0.691
dat_phonological_s1 %>% mutate(vowel_length = if_else(vowel_length == "monophthong", "monophthong", "diphthong")) %>% ggplot(aes(vowel_length,fill=Sex)) + geom_bar(position="fill") + xlab("Vowel Length") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Vowel Length") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
dat_phonological_s1 %>% filter(vowel_length != "monophthong") %>% ggplot(aes(vowel_length,fill=Sex)) + geom_bar(position="fill") + xlab("Diphthong on/off-glide") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Diphthong Type") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Stops
lm_s1_stops = glmer(Sex~stops+(1|syllable_1) , data=dat_phonological_s1, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s1_stops)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ stops + (1 | syllable_1)
##    Data: dat_phonological_s1
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2365.0   2381.7  -1179.5   2359.0     1941 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1659 -0.7838 -0.2086  0.7452  3.1748 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_1 (Intercept) 2.517    1.587   
## Number of obs: 1944, groups:  syllable_1, 119
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   0.1346     0.2082   0.647   0.5179  
## stops1        0.8728     0.4156   2.100   0.0357 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr)
## stops1 0.525
dat_phonological_s1 %>% ggplot(aes(stops,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Stops") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Stop Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Sonorants
lm_s1_sonorants = glmer(Sex~sonorants+(1|syllable_1) , data=dat_phonological_s1, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s1_sonorants)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ sonorants + (1 | syllable_1)
##    Data: dat_phonological_s1
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2365.5   2387.8  -1178.7   2357.5     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0965 -0.7812 -0.2000  0.7361  3.2369 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_1 (Intercept) 2.575    1.605   
## Number of obs: 1944, groups:  syllable_1, 119
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)       -0.2011     0.3799  -0.529    0.597
## sonorantszero     -0.5145     0.6112  -0.842    0.400
## sonorantsone_two   0.7126     1.1076   0.643    0.520
## 
## Correlation of Fixed Effects:
##             (Intr) snrnts
## sonorantszr -0.777       
## sonrntsn_tw -0.874  0.809
dat_phonological_s1 %>% ggplot(aes(sonorants,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Sonorants") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Sonorant Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Lenis Obstruents
lm_s1_plain = glmer(Sex~plain+(1|syllable_1) , data=dat_phonological_s1, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model
## failed to converge with max|grad| = 0.0472614 (tol = 0.001, component 1)
summary(lm_s1_plain)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ plain + (1 | syllable_1)
##    Data: dat_phonological_s1
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2367.4   2389.6  -1179.7   2359.4     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9860 -0.7846 -0.2154  0.7406  3.1201 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_1 (Intercept) 2.572    1.604   
## Number of obs: 1944, groups:  syllable_1, 119
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    0.6805     0.0015   453.7   <2e-16 ***
## plainzero     -1.5501     0.0015 -1033.3   <2e-16 ***
## plainone_two  -2.3794     0.0015 -1586.1   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) planzr
## plainzero   0.000        
## plainone_tw 0.000  0.000 
## convergence code: 0
## Model failed to converge with max|grad| = 0.0472614 (tol = 0.001, component 1)
dat_phonological_s1 %>% ggplot(aes(plain,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Obstruents") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Lenis Obstruent Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# No Fortis Obstruents in S1

# Number of Aspirated Obstruents
lm_s1_aspirated = glmer(Sex~aspirated  + (1|syllable_1), data=dat_phonological_s1, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s1_aspirated)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ aspirated + (1 | syllable_1)
##    Data: dat_phonological_s1
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2368.6   2385.3  -1181.3   2362.6     1941 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9822 -0.7854 -0.2076  0.7421  3.1701 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_1 (Intercept) 2.695    1.642   
## Number of obs: 1944, groups:  syllable_1, 119
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   0.1512     0.3713   0.407    0.684
## aspirated1    0.5756     0.7424   0.775    0.438
## 
## Correlation of Fixed Effects:
##            (Intr)
## aspirated1 0.872
dat_phonological_s1 %>% ggplot(aes(aspirated,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Obstruents") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Aspirated Obstruent Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
######### Syllable #2 ##########

# Initial Sound 
lm_s2_initial_snd = glmer(Sex~initial_snd_type + (1|syllable_2) , data=dat_phonological_s2, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s2_initial_snd)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ initial_snd_type + (1 | syllable_2)
##    Data: dat_phonological_s2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2004.9   2021.6   -999.5   1998.9     1941 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7155 -0.6458 -0.1493  0.5680  4.1888 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.315    2.705   
## Number of obs: 1944, groups:  syllable_2, 145
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)       -0.05646    0.30355  -0.186    0.852
## initial_snd_typeV -0.16780    0.60702  -0.276    0.782
## 
## Correlation of Fixed Effects:
##             (Intr)
## intl_snd_tV 0.520
dat_phonological_s2 %>% ggplot(aes(initial_snd_type,fill=Sex)) + geom_bar(position="fill") + xlab("Sound Type") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Initial Sound Type") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Syllable Type
lm_s2_initial_syll = glmer(Sex~syll_2_type+(1|syllable_2) , data=dat_phonological_s2, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s2_initial_syll)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ syll_2_type + (1 | syllable_2)
##    Data: dat_phonological_s2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1997.5   2014.3   -995.8   1991.5     1941 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7894 -0.6390 -0.1379  0.5717  4.2804 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 6.933    2.633   
## Number of obs: 1944, groups:  syllable_2, 145
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)   
## (Intercept)      -0.2388     0.2670  -0.895  0.37105   
## syll_2_typeOpen  -1.4943     0.5373  -2.781  0.00542 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## syll_2_typO 0.310
dat_phonological_s2 %>% ggplot(aes(syll_2_type,fill=Sex)) + geom_bar(position="fill") + xlab("Syllable Type") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Syllable Type") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Vowel Height
lm_s2_height = glmer(Sex~height+(1|syllable_2) , data=dat_phonological_s2, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s2_height)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ height + (1 | syllable_2)
##    Data: dat_phonological_s2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2006.5   2028.8   -999.2   1998.5     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6462 -0.6451 -0.1467  0.5678  4.2073 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.306    2.703   
## Number of obs: 1944, groups:  syllable_2, 145
## 
## Fixed effects:
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept)   -0.05742    0.26945  -0.213    0.831
## heighthigh    -0.03269    0.54196  -0.060    0.952
## heightlow_mid -0.49930    0.69269  -0.721    0.471
## 
## Correlation of Fixed Effects:
##             (Intr) hghthg
## heighthigh  -0.150       
## heightlw_md  0.252 -0.188
dat_phonological_s2 %>% ggplot(aes(height,fill=Sex)) + geom_bar(position="fill") + xlab("Vowel Height") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Vowel Height") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Vowel Backness
lm_s2_backness = glmer(Sex~backness+(1|syllable_2) , data=dat_phonological_s2, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s2_backness)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ backness + (1 | syllable_2)
##    Data: dat_phonological_s2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1995.6   2017.9   -993.8   1987.6     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6188 -0.6541 -0.1396  0.5638  4.1200 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 6.366    2.523   
## Number of obs: 1944, groups:  syllable_2, 145
## 
## Fixed effects:
##                      Estimate Std. Error z value Pr(>|z|)   
## (Intercept)           -0.1240     0.2554  -0.486  0.62719   
## backnessfront         -1.8856     0.5867  -3.214  0.00131 **
## backnessback_central   0.9698     0.5722   1.695  0.09010 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) bcknss
## backnssfrnt  0.216       
## bcknssbck_c  0.157 -0.106
dat_phonological_s2 %>% ggplot(aes(backness,fill=Sex)) + geom_bar(position="fill") + xlab("Vowel Backness") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Vowel Backness") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
#Vowel Type (Dark - Light - Neutral)
lm_s2_darkness = glmer(Sex~dark_bright+(1|syllable_2) , data=dat_phonological_s2, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s2_darkness)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ dark_bright + (1 | syllable_2)
##    Data: dat_phonological_s2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1995.7   2017.9   -993.8   1987.7     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5969 -0.6527 -0.1384  0.5645  4.1370 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 6.403    2.53    
## Number of obs: 1944, groups:  syllable_2, 145
## 
## Fixed effects:
##                        Estimate Std. Error z value Pr(>|z|)   
## (Intercept)             -0.2320     0.2544  -0.912  0.36165   
## dark_brightneutral      -1.7915     0.5919  -3.027  0.00247 **
## dark_brightbright_dark  -0.9176     0.5597  -1.639  0.10115   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) drk_br
## drk_brghtnt  0.257       
## drk_brghtb_  0.044 -0.020
dat_phonological_s2 -> dat_phonological_s2b
dat_phonological_s2b$dark_bright = as.character(dat_phonological_s2b$dark_bright)
dat_phonological_s2b %>% mutate(dark_bright=if_else(dark_bright == "Bright", "Light", dark_bright)) -> dat_phonological_s2b
dat_phonological_s2b$dark_bright = factor(dat_phonological_s2b$dark_bright, levels = c("Light", "Dark", "Neutral"))

dat_phonological_s2b %>% ggplot(aes(dark_bright,fill=Sex)) + geom_bar(position="fill") + xlab("Vowel Type") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Vowel Type") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Vowel Rounding
lm_s2_round_v = glmer(Sex~round_v_cnt+(1|syllable_2) , data=dat_phonological_s2, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s2_round_v)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ round_v_cnt + (1 | syllable_2)
##    Data: dat_phonological_s2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1997.8   2014.5   -995.9   1991.8     1941 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5513 -0.6537 -0.1468  0.5636  4.2003 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 6.639    2.577   
## Number of obs: 1944, groups:  syllable_2, 145
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    1.0214     0.4475   2.282  0.02247 * 
## round_v_cnt1   1.5001     0.5395   2.781  0.00543 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## rond_v_cnt1 0.831
dat_phonological_s2 %>% ggplot(aes(round_v_cnt,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Vowels") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Round Vowel Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Vowel Length & Diphthong Type
lm_s2_diphthong = glmer(Sex~vowel_length+(1|syllable_2) , data=dat_phonological_s2, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s2_diphthong)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ vowel_length + (1 | syllable_2)
##    Data: dat_phonological_s2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2002.6   2024.9   -997.3   1994.6     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6679 -0.6446 -0.1473  0.5682  4.1859 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.218    2.687   
## Number of obs: 1944, groups:  syllable_2, 145
## 
## Fixed effects:
##                       Estimate Std. Error z value Pr(>|z|)  
## (Intercept)             0.7612     0.4761   1.599   0.1098  
## vowel_lengthmono_diph  -1.3709     0.7670  -1.787   0.0739 .
## vowel_lengthj_w        -2.6248     1.3999  -1.875   0.0608 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) vwl_lngthm_
## vwl_lngthm_ -0.801            
## vwl_lngthj_ -0.642  0.603
dat_phonological_s2 %>% mutate(vowel_length = if_else(vowel_length == "monophthong", "monophthong", "diphthong")) %>% ggplot(aes(vowel_length,fill=Sex)) + geom_bar(position="fill") + xlab("Vowel Length") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Vowel Length") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
dat_phonological_s2 %>% filter(vowel_length != "monophthong") %>% ggplot(aes(vowel_length,fill=Sex)) + geom_bar(position="fill") + xlab("Diphthong on/off-glide") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Diphthong Type") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Stops
lm_s2_stops = glmer(Sex~stops+(1|syllable_2) , data=dat_phonological_s2, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s2_stops)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ stops + (1 | syllable_2)
##    Data: dat_phonological_s2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1989.1   2011.4   -990.6   1981.1     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5435 -0.6413 -0.1409  0.5703  4.2388 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.005    2.647   
## Number of obs: 1944, groups:  syllable_2, 145
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)     5.711     19.395   0.294    0.768
## stopszero      -9.538     29.091  -0.328    0.743
## stopsone_two  -14.030     58.197  -0.241    0.809
## 
## Correlation of Fixed Effects:
##             (Intr) stpszr
## stopszero   -1.000       
## stopsone_tw -1.000  1.000
dat_phonological_s2 %>% ggplot(aes(stops,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Stops") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Stop Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Sonorants
lm_s2_sonorants = glmer(Sex~sonorants+(1|syllable_2) , data=dat_phonological_s2, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s2_sonorants)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ sonorants + (1 | syllable_2)
##    Data: dat_phonological_s2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1994.9   2017.2   -993.4   1986.9     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7538 -0.6472 -0.1074  0.5670  4.1308 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 6.932    2.633   
## Number of obs: 1944, groups:  syllable_2, 145
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       -0.7533     0.3450  -2.184 0.028994 *  
## sonorantszero      1.4057     0.6520   2.156 0.031086 *  
## sonorantsone_two   3.1567     0.9463   3.336 0.000851 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) snrnts
## sonorantszr -0.343       
## sonrntsn_tw -0.643  0.518
dat_phonological_s2 %>% ggplot(aes(sonorants,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Sonorants") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Sonorant Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Lenis Obstruents
lm_s2_plain = glmer(Sex~plain+(1|syllable_2) , data=dat_phonological_s2, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s2_plain)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ plain + (1 | syllable_2)
##    Data: dat_phonological_s2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1979.9   2002.2   -985.9   1971.9     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.4389 -0.6505 -0.1449  0.5730  4.2454 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 6.069    2.463   
## Number of obs: 1944, groups:  syllable_2, 145
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)     5.966     18.312   0.326    0.745
## plainzero     -10.437     27.464  -0.380    0.704
## plainone_two  -17.965     54.931  -0.327    0.744
## 
## Correlation of Fixed Effects:
##             (Intr) planzr
## plainzero   -1.000       
## plainone_tw -1.000  1.000
dat_phonological_s2 %>% ggplot(aes(plain,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Obstruents") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Lenis Obstruent Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Fortis Obstruents

lm_2s_tense = glmer(Sex~tense+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_2s_tense)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ tense + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1774.6   1796.9   -883.3   1766.6     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6473 -0.3997 -0.0343  0.3751  2.6038 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.288    2.700   
##  syllable_1 (Intercept) 3.175    1.782   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   -8.699     21.116  -0.412     0.68
## tense1       -17.969     42.229  -0.426     0.67
## 
## Correlation of Fixed Effects:
##        (Intr)
## tense1 1.000
dat_phonological_full %>% ggplot(aes(tense,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Obstruents") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Fortis Obstruent Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
# Number of Aspirated Obstruents
lm_s2_aspirated = glmer(Sex~aspirated  + (1|syllable_2), data=dat_phonological_s2, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(lm_s2_aspirated)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ aspirated + (1 | syllable_2)
##    Data: dat_phonological_s2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2003.6   2020.3   -998.8   1997.6     1941 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.0461 -0.6451 -0.1480  0.5678  4.1797 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 7.274    2.697   
## Number of obs: 1944, groups:  syllable_2, 145
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   0.6801     0.6293   1.081    0.280
## aspirated1    1.5205     1.2594   1.207    0.227
## 
## Correlation of Fixed Effects:
##            (Intr)
## aspirated1 0.912
dat_phonological_s2 %>% ggplot(aes(aspirated,fill=Sex)) + geom_bar(position="fill") + xlab("Number of Obstruents") + ylab("Proportion") + theme_bw() + guides(fill=guide_legend(title="Sex")) + ggtitle("Aspirated Obstruent Count") + scale_fill_manual(values=c("#663366","#FFCCCC")) + theme(legend.position="bottom")
plot of chunk auto-report
##########################################
######### MULTIVARIATE ANALYSIS ##########
##########################################

########### Full name
glm_2s_trimmed = glmer(Sex~open_syll_cnt+stops+round_v_cnt+w_cnt+tense+aspirated+j_cnt+dark_v_cnt+ (1|syllable_1) + (1|syllable_2), data=dat_phonological_full, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(glm_2s_trimmed)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ open_syll_cnt + stops + round_v_cnt + w_cnt + tense + aspirated +  
##     j_cnt + dark_v_cnt + (1 | syllable_1) + (1 | syllable_2)
##    Data: dat_phonological_full
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1720.0   1809.1   -844.0   1688.0     1928 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5436 -0.3887 -0.0235  0.3618  3.0813 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 4.739    2.177   
##  syllable_1 (Intercept) 2.167    1.472   
## Number of obs: 1944, groups:  syllable_2, 145; syllable_1, 119
## 
## Fixed effects:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -6.5538    23.2781  -0.282 0.778294    
## open_syll_cntzero      2.3935     0.4762   5.027 4.99e-07 ***
## open_syll_cntone_two   1.6800     0.3719   4.518 6.25e-06 ***
## stopszero             -2.4025     0.5581  -4.305 1.67e-05 ***
## stopsone_two          -1.4556     0.5966  -2.440 0.014689 *  
## round_v_cntzero       -1.7540     0.5239  -3.348 0.000813 ***
## round_v_cntone_two    -0.9484     0.5138  -1.846 0.064903 .  
## w_cnt1                 1.8416     0.8427   2.185 0.028855 *  
## tense1               -17.7421    46.5473  -0.381 0.703083    
## aspirated1             1.3393     0.6467   2.071 0.038350 *  
## j_cntzero              1.6435     0.6024   2.728 0.006368 ** 
## j_cntone_two           0.8807     0.5856   1.504 0.132640    
## dark_v_cntzero        -1.2708     0.5004  -2.540 0.011100 *  
## dark_v_cntone_two     -0.7976     0.3787  -2.106 0.035182 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
########### 1st Syllable
glm_s1_trimmed = glmer(Sex~syll_1_type+stops + (1|syllable_1), data=dat_phonological_s1, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(glm_s1_trimmed)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ syll_1_type + stops + (1 | syllable_1)
##    Data: dat_phonological_s1
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   2352.0   2374.3  -1172.0   2344.0     1940 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2567 -0.7768 -0.2100  0.7350  3.2090 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_1 (Intercept) 1.993    1.412   
## Number of obs: 1944, groups:  syllable_1, 119
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       0.1962     0.1921   1.021   0.3071    
## syll_1_typeOpen  -1.3023     0.3269  -3.983  6.8e-05 ***
## stops1            0.7880     0.3829   2.058   0.0396 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sy_1_O
## syll_1_typO -0.055       
## stops1       0.531  0.045
########## 2nd Syllable
glm_s2_trimmed = glmer(Sex~plain+sonorants+round_v_cnt+syll_2_type+vowel_length+aspirated + (1|syllable_2), data=dat_phonological_s2, family="binomial", control = glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6)))
summary(glm_s2_trimmed)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod
## ]
##  Family: binomial  ( logit )
## Formula: Sex ~ plain + sonorants + round_v_cnt + syll_2_type + vowel_length +  
##     aspirated + (1 | syllable_2)
##    Data: dat_phonological_s2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1957.9   2019.2   -968.0   1935.9     1933 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7013 -0.6553 -0.1237  0.5739  4.4107 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  syllable_2 (Intercept) 4.328    2.08    
## Number of obs: 1944, groups:  syllable_2, 145
## 
## Fixed effects:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             7.8786    11.8318   0.666 0.505486    
## plainzero              -9.9206    17.7280  -0.560 0.575749    
## plainone_two          -17.7709    35.4600  -0.501 0.616263    
## sonorantszero           1.3892     1.0910   1.273 0.202929    
## sonorantsone_two        2.0493     0.8653   2.368 0.017869 *  
## round_v_cnt1            1.7882     0.4914   3.639 0.000273 ***
## syll_2_typeOpen        -2.0040     0.8818  -2.273 0.023047 *  
## vowel_lengthmono_diph  -1.1350     0.6386  -1.777 0.075518 .  
## vowel_lengthj_w        -2.5526     1.1420  -2.235 0.025398 *  
## aspirated1              1.9155     1.1667   1.642 0.100636    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) planzr plnn_t snrnts snrnt_ rnd__1 sy_2_O vwl_lngthm_ vwl_lngthj_
## plainzero   -0.997                                                                  
## plainone_tw -0.997  1.000                                                           
## sonorantszr -0.019 -0.007 -0.022                                                    
## sonrntsn_tw -0.019 -0.005 -0.015  0.533                                             
## rond_v_cnt1  0.031  0.005  0.008 -0.153 -0.091                                      
## syll_2_typO  0.013  0.007  0.018 -0.820 -0.276  0.034                               
## vwl_lngthm_ -0.022 -0.014 -0.017  0.147  0.102 -0.107 -0.113                        
## vwl_lngthj_ -0.012 -0.013 -0.014  0.012  0.013 -0.099  0.025  0.591                 
## aspirated1   0.040  0.008  0.018 -0.328 -0.170  0.112  0.249 -0.136      -0.033

The R session information (including the OS info, R version and all packages used):

    sessionInfo()
## R version 3.6.2 (2019-12-12)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Catalina 10.15.5
## 
## Matrix products: default
## BLAS:   /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
## 
## Random number generation:
##  RNG:     Mersenne-Twister 
##  Normal:  Inversion 
##  Sample:  Rounding 
##  
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] ggpubr_0.3.0                  rpart_4.1-15                 
##  [3] forcats_0.4.0                 stringr_1.4.0                
##  [5] dplyr_0.8.4                   purrr_0.3.3                  
##  [7] readr_1.3.1                   tidyr_1.0.2                  
##  [9] tibble_2.1.3                  ggplot2_3.2.1                
## [11] tidyverse_1.3.0               lmerTest_3.1-1               
## [13] lme4_1.1-21                   Matrix_1.2-18                
## [15] LMERConvenienceFunctions_2.10 knitr_1.28                   
## 
## loaded via a namespace (and not attached):
##  [1] nlme_3.1-142            fs_1.3.1                lubridate_1.7.4        
##  [4] webshot_0.5.2           httr_1.4.1              numDeriv_2016.8-1.1    
##  [7] tools_3.6.2             backports_1.1.5         utf8_1.1.4             
## [10] R6_2.4.1                DBI_1.1.0               lazyeval_0.2.2         
## [13] mgcv_1.8-31             colorspace_1.4-1        manipulateWidget_0.10.0
## [16] withr_2.1.2             tidyselect_1.0.0        curl_4.3               
## [19] compiler_3.6.2          cli_2.0.1               rvest_0.3.5            
## [22] xml2_1.2.2              labeling_0.3            scales_1.1.0           
## [25] digest_0.6.23           foreign_0.8-72          minqa_1.2.4            
## [28] rio_0.5.16              pkgconfig_2.0.3         htmltools_0.4.0        
## [31] dbplyr_1.4.2            fastmap_1.0.1           highr_0.8              
## [34] maps_3.3.0              htmlwidgets_1.5.1       rlang_0.4.4            
## [37] readxl_1.3.1            rstudioapi_0.10         shiny_1.4.0            
## [40] farver_2.0.3            generics_0.0.2          jsonlite_1.6.1         
## [43] crosstalk_1.0.0         zip_2.0.4               car_3.0-6              
## [46] magrittr_1.5            dotCall64_1.0-0         Rcpp_1.0.3             
## [49] munsell_0.5.0           fansi_0.4.1             abind_1.4-5            
## [52] lifecycle_0.1.0         stringi_1.4.5           carData_3.0-3          
## [55] MASS_7.3-51.4           plyr_1.8.5              grid_3.6.2             
## [58] parallel_3.6.2          promises_1.1.0          crayon_1.3.4           
## [61] miniUI_0.1.1.1          lattice_0.20-38         cowplot_1.0.0          
## [64] haven_2.2.0             splines_3.6.2           hms_0.5.3              
## [67] pillar_1.4.3            boot_1.3-23             ggsignif_0.6.0         
## [70] reshape2_1.4.3          reprex_0.3.0            glue_1.3.1             
## [73] evaluate_0.14           data.table_1.12.8       modelr_0.1.5           
## [76] vctrs_0.2.2             spam_2.5-1              nloptr_1.2.1           
## [79] httpuv_1.5.2            cellranger_1.1.0        gtable_0.3.0           
## [82] assertthat_0.2.1        openxlsx_4.1.4          xfun_0.12              
## [85] LCFdata_2.0             mime_0.9                xtable_1.8-4           
## [88] broom_0.5.4             rstatix_0.5.0           later_1.0.0            
## [91] fields_10.3             rgl_0.100.47
    Sys.time()
## [1] "2020-07-13 15:42:52 EDT"