This report is automatically generated with the R
package knitr
(version 1.28
)
.
########################################################### ########################################################### ############ NAME GENDERING EXPERIMENT RESULTS ############ ########################################################### ###################### LISA SULLIVAN ###################### ###################### July 13, 2020 ###################### ########################################################### ########################################################### ######################################################### ######### READ IN LANGUAGE SPECIFIC DATA FILES ########## ######################################################### setwd("~/Documents/GP2/expt") read.delim("english_data_all.txt",header=T,as.is = T, comment.char = "#" )->dat_en read.delim("korean_data_all.txt",header=T,as.is = T, comment.char = "#" )->dat_kor #### Remove participant #21 Not a Native speaker of Korean dat_kor %>% filter(participant!=21) ->dat_kor ###### Filter our main task in language specific models ###### dat_en %>% filter(phase == "practice" | phase == "main") %>% select(responses,phase,baseline,word,factor_a,factor_b,level_a,level_b,Sex,Age,English,Korean,BirthCountry,ResidentCountry,KoreanFamiliarity,KoreanGendering,participant) %>% mutate(factor_b = if_else(factor_b == "Initial", "Final", "Initial")) -> dat_en_main dat_kor %>% filter(phase == "practice" | phase == "main") %>% select(responses,phase,baseline,word,factor_a,factor_b,level_a,level_b,Sex,Age,English,Korean,BirthCountry,ResidentCountry,participant) %>% mutate(factor_b=if_else(factor_b == "Initial", "Final", "Initial")) -> dat_kor_main ###### Create combined file with language for combined analysis ###### dat_all_main = NULL dat_en_main %>% select(responses,phase,baseline,word,factor_a,factor_b,level_a,level_b,Sex,Age,English,Korean,BirthCountry,ResidentCountry,participant) -> dat_en_main_b dat_en_main_b$language="English" dat_kor_main$language="Korean" dat_all_main = rbind(dat_en_main_b,dat_kor_main) ###### Set variables to the correct factor type ###### dat_en_main$responses = as.integer(as.character(dat_en_main$responses)) dat_en_main$baseline = as.factor(dat_en_main$baseline) dat_en_main$level_a = as.factor(dat_en_main$level_a) dat_en_main$participant = as.factor(as.character(dat_en_main$participant)) dat_en_main$Sex = as.factor(dat_en_main$Sex) dat_kor_main$participant = as.factor(as.character(dat_kor_main$participant)) dat_kor_main$responses = as.integer(as.character(dat_kor_main$responses)) dat_kor_main$baseline = as.factor(dat_kor_main$baseline) dat_kor_main$level_a = as.factor(dat_kor_main$level_a) dat_kor_main$Sex = as.factor(dat_kor_main$Sex) dat_all_main$responses = as.integer(as.character(dat_all_main$responses)) dat_all_main$baseline = as.factor(dat_all_main$baseline) dat_all_main$level_a = as.factor(dat_all_main$level_a) dat_all_main$Sex = as.factor(dat_all_main$Sex) dat_all_main$participant = as.factor(as.character(dat_all_main$participant)) dat_all_main$language = as.factor(dat_all_main$language) ############################################# ######### FACTOR 1 - VOWEL ROUNDING ######### ############################################# dat_all_main %>% filter(phase == "main", factor_a=="Rounding")%>% group_by(level_a,language) %>% summarize(m=mean(responses), sd=sd(responses)) -> rnd_summary rnd_summary %>% ggplot(aes(language,m, fill=level_a)) + geom_col(position="dodge") + xlab("Language") + ylab("Mean Rating") + theme_bw() + guides(fill=guide_legend(title="Rounding")) + ggtitle("Vowel Rounding") + scale_fill_manual(values=c("#228833","#BBBBBB")) + theme(legend.position="bottom")+ylim(0,6)+ geom_errorbar(aes(ymin=m-sd, ymax=m+sd), width=.2,position=position_dodge(.9))
###### COMBINED ANALYSIS ###### ### Filter for factor ### dat_all_main %>% filter(factor_a=="Rounding") -> dat_all_main_rounding ## Create factor levels dat_all_main_rounding$level_a = as.factor(as.character(dat_all_main_rounding$level_a)) dat_all_main_rounding$language = as.factor(as.character(dat_all_main_rounding$language)) contrasts(dat_all_main_rounding$level_a)=contrasts(dat_all_main_rounding$level_a)-1/2 contrasts(dat_all_main_rounding$Sex)=contrasts(dat_all_main_rounding$Sex)-1/2 contrasts(dat_all_main_rounding$language)=contrasts(dat_all_main_rounding$language)-1/2 ## Regression Model rounding_lm = lmer(responses~level_a*language+(1|baseline)+(1|Sex)+(1|participant), dat_all_main_rounding, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(rounding_lm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a * language + (1 | baseline) + (1 | Sex) + ## (1 | participant) ## Data: dat_all_main_rounding ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 923.7 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -3.06849 -0.68998 0.06437 0.57604 2.61143 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.037622 0.19397 ## baseline (Intercept) 0.029228 0.17096 ## Sex (Intercept) 0.003937 0.06275 ## Residual 0.824248 0.90788 ## Number of obs: 340, groups: participant, 34; baseline, 5; Sex, 2 ## ## Fixed effects: ## Estimate Std. Error df t value Pr(>|t|) ## (Intercept) 3.61501 0.10738 2.26051 33.665 0.000422 *** ## level_aUnrounded 0.06736 0.09864 300.00001 0.683 0.495217 ## languageKorean 0.20770 0.11948 31.72624 1.738 0.091839 . ## level_aUnrounded:languageKorean -0.10972 0.19729 300.00001 -0.556 0.578522 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) lvl_Un lnggKr ## levl_Unrndd 0.000 ## languageKrn 0.043 0.000 ## lvl_Unrnd:K 0.000 0.059 0.000
###### ENGLISH PARTICIPANTS ###### ### Filter for factor ### dat_en_main %>% filter(factor_a=="Rounding") -> dat_en_main_rounding ## Create factor levels dat_en_main_rounding$level_a = as.factor(as.character(dat_en_main_rounding$level_a)) contrasts(dat_en_main_rounding$level_a)=contrasts(dat_en_main_rounding$level_a)-1/2 contrasts(dat_en_main_rounding$Sex)=contrasts(dat_en_main_rounding$Sex)-1/2 ## Regression Model en_rounding_lm = lmer(responses~level_a+(1|baseline)+(1|participant), dat_en_main_rounding, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(en_rounding_lm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a + (1 | baseline) + (1 | participant) ## Data: dat_en_main_rounding ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 477.3 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -2.9806 -0.5614 -0.3025 0.5985 2.9118 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.044382 0.2107 ## baseline (Intercept) 0.007603 0.0872 ## Residual 0.773496 0.8795 ## Number of obs: 180, groups: participant, 18; baseline, 5 ## ## Fixed effects: ## Estimate Std. Error df t value Pr(>|t|) ## (Intercept) 3.50556 0.09101 6.08854 38.517 1.66e-08 *** ## level_aUnrounded 0.12222 0.13111 157.00000 0.932 0.353 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) ## levl_Unrndd 0.000
###### KOREAN PARTICIPANTS ###### ### Filter for factor ### dat_kor_main %>% filter(factor_a=="Rounding") -> dat_kor_main_rounding ## Create factor levels dat_kor_main_rounding$level_a = as.factor(as.character(dat_kor_main_rounding$level_a)) contrasts(dat_kor_main_rounding$level_a)=contrasts(dat_kor_main_rounding$level_a)-1/2 contrasts(dat_kor_main_rounding$Sex)=contrasts(dat_kor_main_rounding$Sex)-1/2 ## Regression model kor_rounding_lm = lmer(responses~level_a+(1|baseline)+(1|participant), dat_kor_main_rounding, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(kor_rounding_lm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a + (1 | baseline) + (1 | participant) ## Data: dat_kor_main_rounding ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 444.4 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -2.0755 -0.7274 0.1153 0.6417 2.1025 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.03564 0.1888 ## baseline (Intercept) 0.07390 0.2719 ## Residual 0.86317 0.9291 ## Number of obs: 160, groups: participant, 16; baseline, 5 ## ## Fixed effects: ## Estimate Std. Error df t value Pr(>|t|) ## (Intercept) 3.7062 0.1497 4.7418 24.762 3.37e-06 *** ## level_aUnrounded 0.0125 0.1469 139.0000 0.085 0.932 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) ## levl_Unrndd 0.000
######################################### ######### FACTOR 2 - VOWEL TYPE ######### ######################################### dat_all_main %>% filter(phase == "main", factor_a=="Vowel Type")%>% group_by(level_a,language) %>% summarize(m=mean(responses), sd=sd(responses)) -> vt_summary vt_summary %>% mutate(uo = if_else(level_a=="Bright","o","u")) -> vt_summary_uo vt_summary_uo %>% ggplot(aes(language,m, fill=uo)) + geom_col(position="dodge") + xlab("Language") + ylab("Mean Rating") + theme_bw() + guides(fill=guide_legend(title="Vowel")) + ggtitle("Vowel Type") + scale_fill_manual(values=c("#4477AA","#EE6677")) + theme(legend.position="bottom")+ylim(0,6)+ geom_errorbar(aes(ymin=m-sd, ymax=m+sd), width=.2,position=position_dodge(.9))
###### COMBINED ANALYSIS ###### ### Filter for factor ### dat_all_main %>% filter(factor_a=="Vowel Type") -> dat_all_main_vowel ## Create factor levels dat_all_main_vowel$level_a = as.factor(as.character(dat_all_main_vowel$level_a)) dat_all_main_vowel$language = as.factor(as.character(dat_all_main_vowel$language)) contrasts(dat_all_main_vowel$level_a)=contrasts(dat_all_main_vowel$level_a)-1/2 contrasts(dat_all_main_vowel$language)=contrasts(dat_all_main_vowel$language)-1/2 ## Regression Model vowel_lm = lmer(responses~level_a*language+(1|Sex)+(1|participant), dat_all_main_vowel, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(vowel_lm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a * language + (1 | Sex) + (1 | participant) ## Data: dat_all_main_vowel ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 885.7 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -3.3416 -0.7607 0.1535 0.4911 2.8388 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.08725 0.2954 ## Sex (Intercept) 0.04875 0.2208 ## Residual 0.71478 0.8454 ## Number of obs: 340, groups: participant, 34; Sex, 2 ## ## Fixed effects: ## Estimate Std. Error df t value Pr(>|t|) ## (Intercept) 3.97631 0.17217 0.97896 23.095 0.0293 * ## level_aDark 0.06875 0.09186 304.00001 0.748 0.4548 ## languageKorean 0.30101 0.13814 31.23552 2.179 0.0370 * ## level_aDark:languageKorean 0.33750 0.18372 304.00001 1.837 0.0672 . ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) lvl_Dr lnggKr ## level_aDark 0.000 ## languageKrn 0.042 0.000 ## lvl_Drk:lnK 0.000 0.059 0.000
###### ENGLISH PARTICIPANTS ###### ### Filter for factor ### dat_en_main %>% filter(factor_a=="Vowel Type") -> dat_en_main_vowel ## Create factor levels dat_en_main_vowel$level_a = as.factor(as.character(dat_en_main_vowel$level_a)) contrasts(dat_en_main_vowel$level_a)=contrasts(dat_en_main_vowel$level_a)-1/2 contrasts(dat_en_main_vowel$Sex)=contrasts(dat_en_main_vowel$Sex)-1/2 ## Regression model en_vowel_lm = lmer(responses~level_a+(1|baseline)+(1|Sex)+(1|participant), dat_en_main_vowel, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(en_vowel_lm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a + (1 | baseline) + (1 | Sex) + (1 | participant) ## Data: dat_en_main_vowel ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 461.5 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -3.3355 -0.7881 0.2452 0.4385 1.5434 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.03970 0.1992 ## baseline (Intercept) 0.01355 0.1164 ## Sex (Intercept) 0.01665 0.1290 ## Residual 0.70124 0.8374 ## Number of obs: 180, groups: participant, 18; baseline, 5; Sex, 2 ## ## Fixed effects: ## Estimate Std. Error df t value Pr(>|t|) ## (Intercept) 3.8097 0.1316 1.2896 28.951 0.009 ** ## level_aDark -0.1000 0.1248 157.0000 -0.801 0.424 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) ## level_aDark 0.000
###### KOREAN PARTICIPANTS ###### ### Filter for factor ### dat_kor_main %>% filter(factor_a=="Vowel Type") -> dat_kor_main_vowel ## Create factor levels dat_kor_main_vowel$level_a = as.factor(as.character(dat_kor_main_vowel$level_a)) contrasts(dat_kor_main_vowel$level_a)=contrasts(dat_kor_main_vowel$level_a)-1/2 contrasts(dat_kor_main_vowel$Sex)=contrasts(dat_kor_main_vowel$Sex)-1/2 ## Regression Model kor_vowel_lm = lmer(responses~level_a+(1|baseline)+(1|Sex)+(1|participant), dat_kor_main_vowel, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(kor_vowel_lm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a + (1 | baseline) + (1 | Sex) + (1 | participant) ## Data: dat_kor_main_vowel ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 408.5 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -2.6771 -0.6038 -0.0563 0.5363 2.6164 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.15652 0.3956 ## baseline (Intercept) 0.11179 0.3344 ## Sex (Intercept) 0.08451 0.2907 ## Residual 0.61632 0.7851 ## Number of obs: 160, groups: participant, 16; baseline, 5; Sex, 2 ## ## Fixed effects: ## Estimate Std. Error df t value Pr(>|t|) ## (Intercept) 4.1422 0.2854 1.6610 14.516 0.00956 ** ## level_aDark 0.2375 0.1241 139.0000 1.913 0.05776 . ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) ## level_aDark 0.000
################################################# ######### FACTOR 3 - SYLLABLE STRUCTURE ######### ################################################# dat_all_main %>% filter(phase == "main", factor_a=="Syllable Closure")%>% group_by(level_a,language) %>% summarize(m=mean(responses), sd=sd(responses)) -> sc_summary sc_summary$level_a <- factor(sc_summary$level_a, levels = c("Both", "Initial", "Final","None")) sc_summary %>% ggplot(aes(language,m, fill=level_a)) + geom_col(position="dodge") + xlab("Language") + ylab("Mean Rating") + theme_bw() + guides(fill=guide_legend(title="Closed")) + ggtitle("Syllable Closure") + scale_fill_manual(values=c("#332288","#33BBEE", "#EE7733", "#EE3377")) + theme(legend.position="bottom")+ylim(0,6)+ geom_errorbar(aes(ymin=m-sd, ymax=m+sd), width=.2,position=position_dodge(.9))
###### COMBINED ANALYSIS ###### ### Filter for factor ### dat_all_main %>% filter(factor_a=="Syllable Closure") -> dat_all_main_syllables ## Create factor levels dat_all_main_syllables$level_a = as.factor(as.character(dat_all_main_syllables$level_a)) contrasts(dat_all_main_syllables$level_a)=cbind(none=c(-1/4,-1/4,-1/4, 3/4), two_one=c(2/3,-1/3,-1/3,0), initial_final=c(0,-1/2,1/2,0)) contrasts(dat_all_main_syllables$Sex)=contrasts(dat_all_main_syllables$Sex)-1/2 ## Regression Model syllable_lm = lmer(responses~level_a*language+(1|baseline)+(1|Sex)+(1|participant), dat_all_main_syllables, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(syllable_lm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a * language + (1 | baseline) + (1 | Sex) + ## (1 | participant) ## Data: dat_all_main_syllables ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 1991 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -2.7520 -0.6442 0.0281 0.6467 3.4060 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.09571 0.3094 ## baseline (Intercept) 0.08311 0.2883 ## Sex (Intercept) 0.05578 0.2362 ## Residual 1.00345 1.0017 ## Number of obs: 680, groups: participant, 34; baseline, 5; Sex, 2 ## ## Fixed effects: ## Estimate Std. Error df t value Pr(>|t|) ## (Intercept) 3.5981 0.2298 2.3908 15.654 0.001823 ** ## level_anone 0.1963 0.1219 636.0000 1.610 0.107902 ## level_atwo_one -0.2222 0.1293 636.0000 -1.718 0.086217 . ## level_ainitial_final 0.1111 0.1493 636.0000 0.744 0.457107 ## languageKorean 0.1694 0.1325 31.1981 1.279 0.210293 ## level_anone:languageKorean -0.6338 0.1777 636.0000 -3.566 0.000390 *** ## level_atwo_one:languageKorean 0.5035 0.1885 636.0000 2.671 0.007763 ** ## level_ainitial_final:languageKorean 0.7264 0.2177 636.0000 3.337 0.000896 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) lvl_nn lvl_t_ lvl_n_ lnggKr lvl_:K lvl_t_:K ## level_anone 0.000 ## level_atw_n 0.000 0.000 ## lvl_ntl_fnl 0.000 0.000 0.000 ## languageKrn -0.258 0.000 0.000 0.000 ## lvl_nn:lngK 0.000 -0.686 0.000 0.000 0.000 ## lvl_tw_n:lK 0.000 0.000 -0.686 0.000 0.000 0.000 ## lvl_ntl_f:K 0.000 0.000 0.000 -0.686 0.000 0.000 0.000
###### ENGLISH PARTICIPANTS ###### ### Filter for factor ### dat_en_main %>% filter(factor_a=="Syllable Closure") -> dat_en_main_syllables ## Create factor levels dat_en_main_syllables$level_a = as.factor(as.character(dat_en_main_syllables$level_a)) contrasts(dat_en_main_syllables$level_a)=cbind(none=c(-1/4,-1/4,-1/4, 3/4), two_one=c(2/3,-1/3,-1/3,0), initial_final=c(0,-1/2,1/2,0)) contrasts(dat_en_main_syllables$Sex)=contrasts(dat_en_main_syllables$Sex)-1/2 ## Regression Model en_syllable_lm = lmer(responses~level_a+(1|baseline)+(1|Sex)+(1|participant), dat_en_main_syllables, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(en_syllable_lm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a + (1 | baseline) + (1 | Sex) + (1 | participant) ## Data: dat_en_main_syllables ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 970.1 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -2.79098 -0.64980 0.03679 0.67676 2.30062 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.07078 0.2660 ## baseline (Intercept) 0.08395 0.2897 ## Sex (Intercept) 0.03714 0.1927 ## Residual 0.78600 0.8866 ## Number of obs: 360, groups: participant, 18; baseline, 5; Sex, 2 ## ## Fixed effects: ## Estimate Std. Error df t value Pr(>|t|) ## (Intercept) 3.5900 0.2042 2.4191 17.578 0.0013 ** ## level_anone 0.1963 0.1079 335.0000 1.819 0.0698 . ## level_atwo_one -0.2222 0.1145 335.0000 -1.942 0.0530 . ## level_ainitial_final 0.1111 0.1322 335.0000 0.841 0.4011 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) lvl_nn lvl_t_ ## level_anone 0.000 ## level_atw_n 0.000 0.000 ## lvl_ntl_fnl 0.000 0.000 0.000
###### KOREAN PARTICIPANTS ###### ### Filter for factor ### dat_kor_main %>% filter(factor_a=="Syllable Closure") -> dat_kor_main_syllables ## Create factor levels dat_kor_main_syllables$level_a = as.factor(as.character(dat_kor_main_syllables$level_a)) contrasts(dat_kor_main_syllables$level_a)=cbind(none=c(-1/4,-1/4,-1/4, 3/4), two_one=c(2/3,-1/3,-1/3,0), initial_final=c(0,-1/2,1/2,0)) contrasts(dat_kor_main_syllables$Sex)=contrasts(dat_kor_main_syllables$Sex)-1/2 ## Regression Model kor_syllable_lm = lmer(responses~level_a+(1|baseline)+(1|Sex)+(1|participant), dat_kor_main_syllables, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(kor_syllable_lm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a + (1 | baseline) + (1 | Sex) + (1 | participant) ## Data: dat_kor_main_syllables ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 981 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -2.7490 -0.6341 -0.0271 0.7084 3.4056 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.13952 0.3735 ## baseline (Intercept) 0.23106 0.4807 ## Sex (Intercept) 0.05949 0.2439 ## Residual 1.12173 1.0591 ## Number of obs: 320, groups: participant, 16; baseline, 5; Sex, 2 ## ## Fixed effects: ## Estimate Std. Error df t value Pr(>|t|) ## (Intercept) 3.7599 0.3014 2.8699 12.477 0.00137 ** ## level_anone -0.4375 0.1367 297.0000 -3.200 0.00152 ** ## level_atwo_one 0.2812 0.1450 297.0000 1.939 0.05341 . ## level_ainitial_final 0.8375 0.1675 297.0000 5.001 9.76e-07 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) lvl_nn lvl_t_ ## level_anone 0.000 ## level_atw_n 0.000 0.000 ## lvl_ntl_fnl 0.000 0.000 0.000
######################################################################### ######### FACTOR 4A - INITIAL OBSTRUENT TYPE - INITIAL SYLLABLE ######### ######################################################################### dat_all_main %>% filter(phase == "main", factor_a=="Stop Type")%>% group_by(level_a,level_b,factor_b,language) %>% summarize(m=mean(responses), sd=sd(responses)) -> st_summary st_summary$level_a <- factor(st_summary$level_a, levels = c("Fortis", "Lenis", "Asp")) st_summary$factor_b <- factor(st_summary$factor_b, levels = c("Initial", "Final")) st_summary %>% rename(vot = level_a, F0 = level_b, syllable = factor_b) -> st_summary st_summary %>% filter(syllable == "Initial") %>% ggplot(aes(language,m, fill=vot)) + geom_col(position="dodge") + xlab("Language") + ylab("Mean Rating") + theme_bw() + guides(fill=guide_legend(title="Obstruent")) + ggtitle("Obstruent Type - Initial Syllable") + theme(legend.position="bottom")+ylim(0,6)+ geom_errorbar(aes(ymin=m-sd, ymax=m+sd), width=.2,position=position_dodge(.9)) + facet_grid(.~F0, labeller = label_both) + scale_fill_manual(values=c("#DDCC77","#AA4499", "#44AA99"))
###### COMBINED ANALYSIS ###### ### Filter for factor ### dat_all_main %>% filter(factor_a=="Stop Type") -> dat_all_main_stops ## Create factor levels dat_all_main_stops$level_a = as.factor(as.character(dat_all_main_stops$level_a)) dat_all_main_stops$level_b = as.factor(as.character(dat_all_main_stops$level_b)) dat_all_main_stops$factor_b = as.factor(as.character(dat_all_main_stops$factor_b)) dat_all_main_stops$language = as.factor(as.character(dat_all_main_stops$language)) contrasts(dat_all_main_stops$level_a)=cbind(asp=c(2/3,-1/3,-1/3), fortis_lenis=c(0,1/2,-1/2)) contrasts(dat_all_main_stops$level_b)=contrasts(dat_all_main_stops$level_b)-1/2 contrasts(dat_all_main_stops$factor_b)=contrasts(dat_all_main_stops$factor_b)-1/2 contrasts(dat_all_main_stops$Sex)=contrasts(dat_all_main_stops$Sex)-1/2 contrasts(dat_all_main_stops$language)=contrasts(dat_all_main_stops$language)-1/2 ## Filter for initial syllable dat_all_main_stops %>% filter(factor_b=="Initial") -> dat_all_main_stops_initial ## Regression Model stops_lm_init = lmer(responses~level_a*level_b*language+(1|baseline)+(1|Sex)+(1|participant), dat_all_main_stops_initial, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(stops_lm_init)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a * level_b * language + (1 | baseline) + (1 | ## Sex) + (1 | participant) ## Data: dat_all_main_stops_initial ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 2679.5 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -3.1289 -0.5740 -0.0273 0.6619 3.1815 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.060892 0.24676 ## baseline (Intercept) 0.114699 0.33867 ## Sex (Intercept) 0.009914 0.09957 ## Residual 0.750977 0.86659 ## Number of obs: 1020, groups: participant, 34; baseline, 5; Sex, 2 ## ## Fixed effects: ## Estimate Std. Error df t value ## (Intercept) 3.81457 0.17514 4.59014 21.780 ## level_aasp 0.07760 0.05766 971.99999 1.346 ## level_afortis_lenis -0.02882 0.06658 971.99999 -0.433 ## level_bLow -0.01296 0.05436 971.99999 -0.238 ## languageKorean 0.19326 0.10142 31.45105 1.906 ## level_aasp:level_bLow -0.03576 0.11532 971.99999 -0.310 ## level_afortis_lenis:level_bLow 0.09653 0.13316 971.99999 0.725 ## level_aasp:languageKorean 0.28854 0.11532 971.99999 2.502 ## level_afortis_lenis:languageKorean -0.07986 0.13316 971.99999 -0.600 ## level_bLow:languageKorean -0.10741 0.10872 971.99999 -0.988 ## level_aasp:level_bLow:languageKorean 0.08403 0.23064 971.99999 0.364 ## level_afortis_lenis:level_bLow:languageKorean 0.28194 0.26632 971.99999 1.059 ## Pr(>|t|) ## (Intercept) 8.25e-06 *** ## level_aasp 0.1786 ## level_afortis_lenis 0.6652 ## level_bLow 0.8116 ## languageKorean 0.0659 . ## level_aasp:level_bLow 0.7565 ## level_afortis_lenis:level_bLow 0.4687 ## level_aasp:languageKorean 0.0125 * ## level_afortis_lenis:languageKorean 0.5488 ## level_bLow:languageKorean 0.3235 ## level_aasp:level_bLow:languageKorean 0.7157 ## level_afortis_lenis:level_bLow:languageKorean 0.2900 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) lvl_sp lvl_f_ lvl_bL lnggKr lv_:_L lv__:_L lvl_:K lv__:K lv_L:K l_:_L: ## level_aasp 0.000 ## lvl_frts_ln 0.000 0.000 ## level_bLow 0.000 0.000 0.000 ## languageKrn 0.027 0.000 0.000 0.000 ## lvl_sp:lv_L 0.000 0.000 0.000 0.000 0.000 ## lvl_frt_:_L 0.000 0.000 0.000 0.000 0.000 0.000 ## lvl_sp:lngK 0.000 0.059 0.000 0.000 0.000 0.000 0.000 ## lvl_frts_:K 0.000 0.000 0.059 0.000 0.000 0.000 0.000 0.000 ## lvl_bLw:lnK 0.000 0.000 0.000 0.059 0.000 0.000 0.000 0.000 0.000 ## lvl_sp:_L:K 0.000 0.000 0.000 0.000 0.000 0.059 0.000 0.000 0.000 0.000 ## lvl_f_:_L:K 0.000 0.000 0.000 0.000 0.000 0.000 0.059 0.000 0.000 0.000 0.000
###### ENGLISH PARTICIPANTS ###### ### Filter for factor ### dat_en_main %>% filter(factor_a=="Stop Type") -> dat_en_main_stops ## Create factor levels dat_en_main_stops$level_a = as.factor(as.character(dat_en_main_stops$level_a)) dat_en_main_stops$level_b = as.factor(as.character(dat_en_main_stops$level_b)) dat_en_main_stops$factor_b = as.factor(as.character(dat_en_main_stops$factor_b)) contrasts(dat_en_main_stops$level_a)=cbind(asp=c(2/3,-1/3,-1/3), fortis_lenis=c(0,1/2,-1/2)) contrasts(dat_en_main_stops$level_b)=contrasts(dat_en_main_stops$level_b)-1/2 contrasts(dat_en_main_stops$factor_b)=contrasts(dat_en_main_stops$factor_b)-1/2 contrasts(dat_en_main_stops$Sex)=contrasts(dat_en_main_stops$Sex)-1/2 ## Filter for initial syllable dat_en_main_stops %>% filter(factor_b=="Initial") -> dat_en_main_stops_initial ## Regression Model en_stops_lm_init = lmer(responses~level_a*level_b+(1|baseline)+(1|participant), dat_en_main_stops_initial, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(en_stops_lm_init)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a * level_b + (1 | baseline) + (1 | participant) ## Data: dat_en_main_stops_initial ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 1479.8 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -2.84563 -0.65630 0.08365 0.59606 2.92279 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.01466 0.1211 ## baseline (Intercept) 0.06666 0.2582 ## Residual 0.86314 0.9291 ## Number of obs: 540, groups: participant, 18; baseline, 5 ## ## Fixed effects: ## Estimate Std. Error df t value Pr(>|t|) ## (Intercept) 3.70556 0.12548 4.42076 29.532 3e-06 *** ## level_aasp -0.06667 0.08481 513.00000 -0.786 0.432 ## level_afortis_lenis 0.01111 0.09793 513.00000 0.113 0.910 ## level_bLow 0.04074 0.07996 513.00000 0.510 0.611 ## level_aasp:level_bLow -0.07778 0.16962 513.00000 -0.459 0.647 ## level_afortis_lenis:level_bLow -0.04444 0.19586 513.00000 -0.227 0.821 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) lvl_sp lvl_f_ lvl_bL lv_:_L ## level_aasp 0.000 ## lvl_frts_ln 0.000 0.000 ## level_bLow 0.000 0.000 0.000 ## lvl_sp:lv_L 0.000 0.000 0.000 0.000 ## lvl_frt_:_L 0.000 0.000 0.000 0.000 0.000
###### KOREAN PARTICIPANTS ###### ### Filter for factor ### dat_kor_main %>% filter(factor_a=="Stop Type") -> dat_kor_main_stops ## Create factor levels dat_kor_main_stops$level_a = as.factor(as.character(dat_kor_main_stops$level_a)) dat_kor_main_stops$level_b = as.factor(as.character(dat_kor_main_stops$level_b)) dat_kor_main_stops$factor_b = as.factor(as.character(dat_kor_main_stops$factor_b)) contrasts(dat_kor_main_stops$level_a)=cbind(asp=c(2/3,-1/3,-1/3), fortis_lenis=c(0,1/2,-1/2)) contrasts(dat_kor_main_stops$level_b)=contrasts(dat_kor_main_stops$level_b)-1/2 contrasts(dat_kor_main_stops$factor_b)=contrasts(dat_kor_main_stops$factor_b)-1/2 contrasts(dat_kor_main_stops$Sex)=contrasts(dat_kor_main_stops$Sex)-1/2 ## Filter for Initial syllable dat_kor_main_stops %>% filter(factor_b=="Initial") -> dat_kor_main_stops_initial ## Regression Model kor_stops_lm_init = lmer(responses~level_a*level_b+(1|baseline)+(1|Sex)+(1|participant), dat_kor_main_stops_initial, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(kor_stops_lm_init)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a * level_b + (1 | baseline) + (1 | Sex) + ## (1 | participant) ## Data: dat_kor_main_stops_initial ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 1146.3 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -3.2959 -0.6049 -0.0624 0.6118 2.9854 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.122329 0.34976 ## baseline (Intercept) 0.239958 0.48986 ## Sex (Intercept) 0.006349 0.07968 ## Residual 0.565064 0.75171 ## Number of obs: 480, groups: participant, 16; baseline, 5; Sex, 2 ## ## Fixed effects: ## Estimate Std. Error df t value Pr(>|t|) ## (Intercept) 3.89632 0.24620 4.06585 15.826 8.34e-05 *** ## level_aasp 0.22187 0.07278 455.00000 3.048 0.00243 ** ## level_afortis_lenis -0.06875 0.08404 455.00000 -0.818 0.41377 ## level_bLow -0.06667 0.06862 455.00000 -0.972 0.33181 ## level_aasp:level_bLow 0.00625 0.14557 455.00000 0.043 0.96577 ## level_afortis_lenis:level_bLow 0.23750 0.16809 455.00000 1.413 0.15835 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) lvl_sp lvl_f_ lvl_bL lv_:_L ## level_aasp 0.000 ## lvl_frts_ln 0.000 0.000 ## level_bLow 0.000 0.000 0.000 ## lvl_sp:lv_L 0.000 0.000 0.000 0.000 ## lvl_frt_:_L 0.000 0.000 0.000 0.000 0.000
####################################################################### ######### FACTOR 4B - INITIAL OBSTRUENT TYPE - FINAL SYLLABLE ######### ####################################################################### st_summary %>% filter(syllable == "Final") %>% ggplot(aes(language,m, fill=vot)) + geom_col(position="dodge") + xlab("Language") + ylab("Mean Rating") + theme_bw() + guides(fill=guide_legend(title="Obstruent")) + ggtitle("Obstruent Type - Final Syllable") + theme(legend.position="bottom")+ylim(0,6)+ geom_errorbar(aes(ymin=m-sd, ymax=m+sd), width=.2,position=position_dodge(.9)) + facet_grid(.~F0, labeller = label_both) + scale_fill_manual(values=c("#DDCC77","#AA4499", "#44AA99"))
###### COMBINED ANALYSIS ###### ## Filter for final syllable dat_all_main_stops %>% filter(factor_b=="Final") -> dat_all_main_stops_final ## Regression Model stops_lm_fin = lmer(responses~level_a*level_b*language+(1|baseline)+(1|Sex)+(1|participant), dat_all_main_stops_final, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(stops_lm_fin)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a * level_b * language + (1 | baseline) + (1 | ## Sex) + (1 | participant) ## Data: dat_all_main_stops_final ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 2365.6 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -3.4318 -0.6119 0.0836 0.6354 3.3104 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.1127 0.3357 ## baseline (Intercept) 0.1358 0.3685 ## Sex (Intercept) 0.0152 0.1233 ## Residual 0.5359 0.7321 ## Number of obs: 1020, groups: participant, 34; baseline, 5; Sex, 2 ## ## Fixed effects: ## Estimate Std. Error df t value ## (Intercept) 3.68955 0.19742 4.43046 18.689 ## level_aasp 0.04115 0.04871 972.00000 0.845 ## level_afortis_lenis 0.09062 0.05624 972.00000 1.611 ## level_bLow 0.00463 0.04592 972.00000 0.101 ## languageKorean 0.11504 0.12501 31.44879 0.920 ## level_aasp:level_bLow -0.01632 0.09742 972.00000 -0.168 ## level_afortis_lenis:level_bLow -0.01875 0.11249 972.00000 -0.167 ## level_aasp:languageKorean 0.19896 0.09742 972.00000 2.042 ## level_afortis_lenis:languageKorean 0.08125 0.11249 972.00000 0.722 ## level_bLow:languageKorean -0.17593 0.09185 972.00000 -1.915 ## level_aasp:level_bLow:languageKorean -0.35486 0.19484 972.00000 -1.821 ## level_afortis_lenis:level_bLow:languageKorean 0.16250 0.22498 972.00000 0.722 ## Pr(>|t|) ## (Intercept) 2.2e-05 *** ## level_aasp 0.3985 ## level_afortis_lenis 0.1074 ## level_bLow 0.9197 ## languageKorean 0.3645 ## level_aasp:level_bLow 0.8670 ## level_afortis_lenis:level_bLow 0.8677 ## level_aasp:languageKorean 0.0414 * ## level_afortis_lenis:languageKorean 0.4703 ## level_bLow:languageKorean 0.0557 . ## level_aasp:level_bLow:languageKorean 0.0689 . ## level_afortis_lenis:level_bLow:languageKorean 0.4703 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) lvl_sp lvl_f_ lvl_bL lnggKr lv_:_L lv__:_L lvl_:K lv__:K lv_L:K l_:_L: ## level_aasp 0.000 ## lvl_frts_ln 0.000 0.000 ## level_bLow 0.000 0.000 0.000 ## languageKrn 0.030 0.000 0.000 0.000 ## lvl_sp:lv_L 0.000 0.000 0.000 0.000 0.000 ## lvl_frt_:_L 0.000 0.000 0.000 0.000 0.000 0.000 ## lvl_sp:lngK 0.000 0.059 0.000 0.000 0.000 0.000 0.000 ## lvl_frts_:K 0.000 0.000 0.059 0.000 0.000 0.000 0.000 0.000 ## lvl_bLw:lnK 0.000 0.000 0.000 0.059 0.000 0.000 0.000 0.000 0.000 ## lvl_sp:_L:K 0.000 0.000 0.000 0.000 0.000 0.059 0.000 0.000 0.000 0.000 ## lvl_f_:_L:K 0.000 0.000 0.000 0.000 0.000 0.000 0.059 0.000 0.000 0.000 0.000
###### ENGLISH PARTICIPANTS ###### ## Filter for final syllable dat_en_main_stops %>% filter(factor_b=="Final") -> dat_en_main_stops_final ## Regression Model en_stops_lm_fin = lmer(responses~level_a*level_b+(1|baseline)+(1|participant), dat_en_main_stops_final, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(en_stops_lm_fin)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a * level_b + (1 | baseline) + (1 | participant) ## Data: dat_en_main_stops_final ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 1349.4 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -3.0414 -0.6591 0.1353 0.6783 3.1664 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.11350 0.3369 ## baseline (Intercept) 0.09609 0.3100 ## Residual 0.64318 0.8020 ## Number of obs: 540, groups: participant, 18; baseline, 5 ## ## Fixed effects: ## Estimate Std. Error df t value Pr(>|t|) ## (Intercept) 3.61667 0.16345 6.64222 22.127 1.8e-07 *** ## level_aasp -0.05833 0.07321 513.00000 -0.797 0.426 ## level_afortis_lenis 0.05000 0.08454 513.00000 0.591 0.554 ## level_bLow 0.09259 0.06902 513.00000 1.341 0.180 ## level_aasp:level_bLow 0.16111 0.14642 513.00000 1.100 0.272 ## level_afortis_lenis:level_bLow -0.10000 0.16907 513.00000 -0.591 0.554 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) lvl_sp lvl_f_ lvl_bL lv_:_L ## level_aasp 0.000 ## lvl_frts_ln 0.000 0.000 ## level_bLow 0.000 0.000 0.000 ## lvl_sp:lv_L 0.000 0.000 0.000 0.000 ## lvl_frt_:_L 0.000 0.000 0.000 0.000 0.000
###### KOREAN PARTICIPANTS ###### ## Filter for Final syllable dat_kor_main_stops %>% filter(factor_b=="Final") -> dat_kor_main_stops_final ## Regression Model kor_stops_lm_fin = lmer(responses~level_a*level_b+(1|baseline)+(1|Sex)+(1|participant), dat_kor_main_stops_final, control = lmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=2e6))) summary(kor_stops_lm_fin)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] ## Formula: responses ~ level_a * level_b + (1 | baseline) + (1 | Sex) + ## (1 | participant) ## Data: dat_kor_main_stops_final ## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06)) ## ## REML criterion at convergence: 991.2 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -3.3468 -0.5463 0.0030 0.5696 2.9180 ## ## Random effects: ## Groups Name Variance Std.Dev. ## participant (Intercept) 0.10715 0.3273 ## baseline (Intercept) 0.19385 0.4403 ## Sex (Intercept) 0.04917 0.2218 ## Residual 0.40384 0.6355 ## Number of obs: 480, groups: participant, 16; baseline, 5; Sex, 2 ## ## Fixed effects: ## Estimate Std. Error df t value Pr(>|t|) ## (Intercept) 3.77855 0.26959 3.21454 14.016 0.000543 *** ## level_aasp 0.14062 0.06153 455.00000 2.285 0.022745 * ## level_afortis_lenis 0.13125 0.07105 455.00000 1.847 0.065350 . ## level_bLow -0.08333 0.05801 455.00000 -1.437 0.151547 ## level_aasp:level_bLow -0.19375 0.12306 455.00000 -1.574 0.116083 ## level_afortis_lenis:level_bLow 0.06250 0.14210 455.00000 0.440 0.660264 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) lvl_sp lvl_f_ lvl_bL lv_:_L ## level_aasp 0.000 ## lvl_frts_ln 0.000 0.000 ## level_bLow 0.000 0.000 0.000 ## lvl_sp:lv_L 0.000 0.000 0.000 0.000 ## lvl_frt_:_L 0.000 0.000 0.000 0.000 0.000
The R session information (including the OS info, R version and all packages used):
sessionInfo()
## R version 3.6.2 (2019-12-12) ## Platform: x86_64-apple-darwin15.6.0 (64-bit) ## Running under: macOS Catalina 10.15.5 ## ## Matrix products: default ## BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib ## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib ## ## Random number generation: ## RNG: Mersenne-Twister ## Normal: Inversion ## Sample: Rounding ## ## locale: ## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 ## ## attached base packages: ## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages: ## [1] ggpubr_0.3.0 rpart_4.1-15 ## [3] forcats_0.4.0 stringr_1.4.0 ## [5] dplyr_0.8.4 purrr_0.3.3 ## [7] readr_1.3.1 tidyr_1.0.2 ## [9] tibble_2.1.3 ggplot2_3.2.1 ## [11] tidyverse_1.3.0 lmerTest_3.1-1 ## [13] lme4_1.1-21 Matrix_1.2-18 ## [15] LMERConvenienceFunctions_2.10 knitr_1.28 ## ## loaded via a namespace (and not attached): ## [1] nlme_3.1-142 fs_1.3.1 lubridate_1.7.4 ## [4] webshot_0.5.2 httr_1.4.1 numDeriv_2016.8-1.1 ## [7] tools_3.6.2 backports_1.1.5 utf8_1.1.4 ## [10] R6_2.4.1 DBI_1.1.0 lazyeval_0.2.2 ## [13] mgcv_1.8-31 colorspace_1.4-1 manipulateWidget_0.10.0 ## [16] withr_2.1.2 tidyselect_1.0.0 curl_4.3 ## [19] compiler_3.6.2 cli_2.0.1 rvest_0.3.5 ## [22] xml2_1.2.2 labeling_0.3 scales_1.1.0 ## [25] digest_0.6.23 foreign_0.8-72 minqa_1.2.4 ## [28] rio_0.5.16 pkgconfig_2.0.3 htmltools_0.4.0 ## [31] dbplyr_1.4.2 fastmap_1.0.1 highr_0.8 ## [34] maps_3.3.0 htmlwidgets_1.5.1 rlang_0.4.4 ## [37] readxl_1.3.1 rstudioapi_0.10 shiny_1.4.0 ## [40] farver_2.0.3 generics_0.0.2 jsonlite_1.6.1 ## [43] crosstalk_1.0.0 zip_2.0.4 car_3.0-6 ## [46] magrittr_1.5 dotCall64_1.0-0 Rcpp_1.0.3 ## [49] munsell_0.5.0 fansi_0.4.1 abind_1.4-5 ## [52] lifecycle_0.1.0 stringi_1.4.5 carData_3.0-3 ## [55] MASS_7.3-51.4 plyr_1.8.5 grid_3.6.2 ## [58] parallel_3.6.2 promises_1.1.0 crayon_1.3.4 ## [61] miniUI_0.1.1.1 lattice_0.20-38 cowplot_1.0.0 ## [64] haven_2.2.0 splines_3.6.2 hms_0.5.3 ## [67] pillar_1.4.3 boot_1.3-23 ggsignif_0.6.0 ## [70] reshape2_1.4.3 reprex_0.3.0 glue_1.3.1 ## [73] evaluate_0.14 data.table_1.12.8 modelr_0.1.5 ## [76] vctrs_0.2.2 spam_2.5-1 nloptr_1.2.1 ## [79] httpuv_1.5.2 cellranger_1.1.0 gtable_0.3.0 ## [82] assertthat_0.2.1 openxlsx_4.1.4 xfun_0.12 ## [85] LCFdata_2.0 mime_0.9 xtable_1.8-4 ## [88] broom_0.5.4 rstatix_0.5.0 later_1.0.0 ## [91] fields_10.3 rgl_0.100.47
Sys.time()
## [1] "2020-07-14 21:09:15 EDT"